Solveeit Logo

Question

Mathematics Question on Binomial theorem

Find the value of (a2+a21)4+(a2a21)4( a^2 + \sqrt{a^2-1})^4 + ( a^2 - \sqrt{a^2-1})^4

Answer

Firstly, the expression (x+y)4+(xy)4(x+ y)^ 4+ (x - y)^ 4 is simplified by using Binomial Theorem.
This can be done as
(x+y)4=  4C0x4+  4C1x3y+  4C2x2y2+  4C3xy3+  4C4y4(x+y)^4 = \space^4C_0x^4+\space^4C_1x^3y^+ \space^4C_2x^2y^2+\space^4C_3xy^3 +\space^ 4C_4y^4

=x4+4x3y+6x2y2+4xy3+y4=x^4 + 4x^3y+ 6x^2y^2 + 4xy^3 + y^4

(xy)4=  4C0x4  4C1x3y+  4C2x2y2  4C3xy3+  4C4y4(x-y)^4 =\space^ 4C_0x^4 - \space^4C_1x^3y+\space^ 4C_2x^2y^2 - \space^4C_3xy^3 +\space^ 4C_4y^4

=x44x3y+6x2y24xy3+y4=x^4 - 4x^3y+ 6x^2y^2 - 4xy^3 + y^4

(x+y)4+(xy)4=2(x4+6x2y2+y4)∴ (x+ y)^4 + (x - y)^4 = 2(x^4 + 6 x^2y^2+ y^4)

Putting x=a2x = a^2 and y=a21=a21y = \sqrt{a^2-1} =\sqrt{a^2-1}, we obtain

(a2+a21)4+(a2a21)=2(a2)2+6(a2)(a21)2+(a21)4](a^2 + \sqrt{a^2 −1})^4 + (a^2 - \sqrt{a^2 −1}) = 2 (a^2)^2 +6(a^2) (\sqrt{a^2−1})^2 + (\sqrt{a^2-1})^4]

=2[a8+6a4(a21)+(a21)2]=2 [a^8 + 6a^4 (a^2 - 1) + (a^2 − 1)^2]

=2[a8+6a66a4+a42a2+1]= 2[a^8 + 6a^6 − 6a^4 + a^4 − 2a^2+1]

=2[a8+6a65a42a2+1]=2[a^8 +6a^6 -5a^4 -2a^2+1]

=2a8+12a610a44a2+2= 2a^8 +12a^6 - 10a^4 - 4a^2 +2