Solveeit Logo

Question

Question: Find the value of \(^{6}{{C}_{0}}^{12}{{C}_{6}}{{-}^{6}}{{C}_{1}}^{11}{{C}_{6}}+\cdots {{+}^{6}}{{C}...

Find the value of 6C012C66C111C6++6C66C6^{6}{{C}_{0}}^{12}{{C}_{6}}{{-}^{6}}{{C}_{1}}^{11}{{C}_{6}}+\cdots {{+}^{6}}{{C}_{6}}^{6}{{C}_{6}}.

Explanation

Solution

Hint: Use nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}. Hence calculate the value of each term in the series and hence find the sum of the series. Alternatively, simplify the expression 6CrnrC6^{6}{{C}_{r}}^{n-r}{{C}_{6}} and hence find an expression in r by putting r = 0,1,2,..6 and solve.

Complete step-by-step answer:
We know that nCr=n!(nr)!r!^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}
Put n = 6, r =0, we get
6C0=6!6!=1^{6}{{C}_{0}}=\dfrac{6!}{6!}=1
Put n = 6, r = 1, we get
6C1=6^{6}{{C}_{1}}=6
Put n = 6, r = 2, we get
6C2=15^{6}{{C}_{2}}=15
Put n = 6, r = 3, we get
6C3=20^{6}{{C}_{3}}=20
Similarly 6C4=15,6C5=6^{6}{{C}_{4}}=15{{,}^{6}}{{C}_{5}}=6 and 6C6=1^{6}{{C}_{6}}=1
Now put n = 12 and r = 6
12C6=12!6!6!=924^{12}{{C}_{6}}=\dfrac{12!}{6!6!}=924
Now, we have n1CrnCr=nrn\dfrac{^{n-1}{{C}_{r}}}{^{n}{{C}_{r}}}=\dfrac{n-r}{n}
Hence, we have
n1Cr=nrn×nCr^{n-1}{{C}_{r}}=\dfrac{n-r}{n}{{\times }^{n}}{{C}_{r}}
Using the above formula, we get
11C6=12612×12C6=612×924=462 10C6=11611×11C6=511×462=210 9C6=410×210=84 8C6=39×84=28 7C6=28×28=7 6C6=77=1 \begin{aligned} & ^{11}{{C}_{6}}=\dfrac{12-6}{12}{{\times }^{12}}{{C}_{6}}=\dfrac{6}{12}\times 924=462 \\\ & {{\Rightarrow }^{10}}{{C}_{6}}=\dfrac{11-6}{11}{{\times }^{11}}{{C}_{6}}=\dfrac{5}{11}\times 462=210 \\\ & {{\Rightarrow }^{9}}{{C}_{6}}=\dfrac{4}{10}\times 210=84 \\\ & {{\Rightarrow }^{8}}{{C}_{6}}=\dfrac{3}{9}\times 84=28 \\\ & {{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{8}\times 28=7 \\\ & {{\Rightarrow }^{6}}{{C}_{6}}=\dfrac{7}{7}=1 \\\ \end{aligned}
Hence the given sum becomes
924462(6)+210(15)84(20)+28(15)7(6)+1(1)=1924-462(6)+210(15)-84(20)+28(15)-7(6)+1(1) = 1

Note: [1] Alternatively, we have
Tr=6Cr12rC6=6!(6r)!r!×(12r)!(6r)!6!=(12r)!(6r)!(6r)!r!{{T}_{r}}{{=}^{6}}{{C}_{r}}^{12-r}{{C}_{6}}=\dfrac{6!}{\left( 6-r \right)!r!}\times \dfrac{\left( 12-r \right)!}{\left( 6-r \right)!6!}=\dfrac{\left( 12-r \right)!}{\left( 6-r \right)!\left( 6-r \right)!r!}
Hence we have Tr+1Tr=(6r)2(12r)(r+1)\dfrac{{{T}_{r+1}}}{{{T}_{r}}}=\dfrac{{{\left( 6-r \right)}^{2}}}{\left( 12-r \right)\left( r+1 \right)}
Now we have T0=12!6!6!=924{{T}_{0}}=\dfrac{12!}{6!6!}=924
Hence, we have
T1=924×6212=2772 T2=2772×52(11)(2)=3150 T3=3150×4210(3)=1680 T4=1680×329(4)=420 T5=420×22(8)(5)=42 T6=42×127(6)=1 \begin{aligned} & {{T}_{1}}=924\times \dfrac{{{6}^{2}}}{12}=2772 \\\ & \Rightarrow {{T}_{2}}=2772\times \dfrac{{{5}^{2}}}{\left( 11 \right)\left( 2 \right)}=3150 \\\ & \Rightarrow {{T}_{3}}=3150\times \dfrac{{{4}^{2}}}{10\left( 3 \right)}=1680 \\\ & \Rightarrow {{T}_{4}}=1680\times \dfrac{{{3}^{2}}}{9\left( 4 \right)}=420 \\\ & \Rightarrow {{T}_{5}}=420\times \dfrac{{{2}^{2}}}{\left( 8 \right)\left( 5 \right)}=42 \\\ & \Rightarrow {{T}_{6}}=42\times \dfrac{{{1}^{2}}}{7\left( 6 \right)}=1 \\\ \end{aligned}
Hence the sum equals 9242772+31501680+42042+1=1924-2772+3150-1680+420-42+1=1.
Hence the sum of the series equals 1.
[2] Students often make a mistake by writing 12rC66Cr=12rC6r6Cr^{12-r}{{C}_{6}}^{6}{{C}_{r}}{{=}^{12-r}}{{C}_{6-r}}^{6}{{C}_{r}} and equating it to the coefficient of x6{{x}^{6}} in the expansion of (1+x)6(1x)12r{{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}}, which is not correct and will yield incorrect results. There are many more terms responsible for the coefficient of x6{{x}^{6}} in the expansion of (1+x)6(1x)12r{{\left( 1+x \right)}^{6}}{{\left( 1-x \right)}^{12-r}} other than 12rC6r6Cr^{12-r}{{C}_{6-r}}^{6}{{C}_{r}}.