Solveeit Logo

Question

Question: Find the value of \(4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \r...

Find the value of 4tan1(15)tan1(170)+tan1(199)=4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)=
1. π2\dfrac{\pi }{2}
2. π3\dfrac{\pi }{3}
3. π4\dfrac{\pi }{4}
4. None of these

Explanation

Solution

To find the value of the given expression we will use the trigonometric formula related to the tangent function. We will use following formulas in order to solve the given expression
2tan1x=tan12x1x22{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}
tan1xtan1y=tan1xy1+xy{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}

Complete step by step answer:
We have been given an expression 4tan1(15)tan1(170)+tan1(199)4{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)+{{\tan }^{-1}}\left( \dfrac{1}{99} \right).
We have to find the value of the given expression.
First we will rearrange the terms of the given expression. Then we will get
2[2tan1(15)]+tan1(199)tan1(170)\Rightarrow 2\left[ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)
Now, we know that 2tan1x=tan12x1x22{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}.
Now, applying the formula to the above obtained equation we will get
2[tan12(15)1(15)2]+tan1(199)tan1(170)\Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)
Now, simplifying the above obtained equation we will get

& \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{25-1}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ & \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{2}{5} \right)}{\left( \dfrac{24}{25} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ & \Rightarrow 2\left[ {{\tan }^{-1}}\dfrac{5}{12} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ \end{aligned}$$ Now, again applying the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}}$ we will get $$\Rightarrow \left[ {{\tan }^{-1}}\dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right)$$ Now, simplifying the above obtained equation we will get $$\begin{aligned} & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{144-25}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{\left( \dfrac{5}{6} \right)}{\left( \dfrac{119}{144} \right)} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{1}{99} \right)-{{\tan }^{-1}}\left( \dfrac{1}{70} \right) \\\ \end{aligned}$$ Now, we know that ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ Now, applying the above formula to the obtained equation we will get $$\Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{99}-\dfrac{1}{70}}{1+\dfrac{1}{99}\times \dfrac{1}{70}} \right)$$ Now, simplifying the above obtained equation we will get $$\begin{aligned} & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{70-99}{6930}}{1+\dfrac{1}{6930}} \right) \\\ & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{\dfrac{-29}{6930}}{\dfrac{6930+1}{6930}} \right) \\\ & \Rightarrow \left[ {{\tan }^{-1}}\dfrac{120}{119} \right]+{{\tan }^{-1}}\left( \dfrac{-29}{6931} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{120}{119} \right)-{{\tan }^{-1}}\left( \dfrac{29}{6931} \right) \\\ \end{aligned}$$ Now, again applying the formula ${{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy}$ to the above obtained equation we will get $$\Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120}{119}-\dfrac{29}{6931}}{1+\dfrac{120}{119}\times \dfrac{29}{6931}} \right)$$ Now, simplifying the above obtained equation we will get $$\begin{aligned} & \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{120\times 6931-29\times 119}{119\times 6931}}{1+\dfrac{120\times 29}{119\times 6931}} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{831720-3451}{824809+3480} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( \dfrac{828269}{828269} \right) \\\ & \Rightarrow {{\tan }^{-1}}(1) \\\ & \Rightarrow \dfrac{\pi }{4} \\\ \end{aligned}$$ Hence above is the required value of the given expression. **So, the correct answer is “Option 3”.** **Note:** To solve such types of questions students must know the basic concepts of trigonometry. As the calculation is lengthy in this particular question so please avoid calculation mistakes. We can also simplify the numbers by multiplying or dividing. We can simplify the numbers so that the calculation becomes easy.