Solveeit Logo

Question

Question: Find the value of \(4{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ \)....

Find the value of 4sin260+3tan2308sin45.cos454{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ .

Explanation

Solution

Hint : The given problem revolves around the concepts of trigonometric ratios. Here, we are given a trigonometric expression 4sin260+3tan2308sin45.cos454{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ and we have to find the value of it. As we can see we are given various trigonometric ratios for any angle, we just need to substitute the values of trigonometric ratios of a particular angle and add or subtract them according to the given trigonometric expression.

Complete step by step solution:
We have,
4sin260+3tan2308sin45.cos454{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ
We can solve the given trigonometric expression by calculating the values of various trigonometric ratios and then substituting them in the given trigonometric expression.
We can see that sine\sin e and tangent\tan gent functions are given in the form of squares.
sin260{\sin ^2}60^\circ is nothing but square of sin60\sin 60^\circ i.e., (sin60)2{\left( {\sin 60^\circ } \right)^2}.
sin260=(sin60)2\Rightarrow {\sin ^2}60^\circ = {\left( {\sin 60^\circ } \right)^2}
As we know the value of sin60\sin 60^\circ is (32)\left( {\dfrac{{\sqrt 3 }}{2}} \right) .
(sin60)2=(32)2\Rightarrow {\left( {\sin 60^\circ } \right)^2} = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}
(sin60)2=(34)\Rightarrow {\left( {\sin 60^\circ } \right)^2} = \left( {\dfrac{3}{4}} \right)
Similarly we can write tan230{\tan ^2}30^\circ as(tan30)2{\left( {\tan 30^\circ } \right)^2}.
tan230=(tan30)2\Rightarrow {\tan ^2}30^\circ = {\left( {\tan 30^\circ } \right)^2}
As we know the value of tan30\tan 30^\circ is(13)\left( {\dfrac{1}{{\sqrt 3 }}} \right).
(tan30)2=(13)2\Rightarrow {\left( {\tan 30^\circ } \right)^2} = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^2}
(tan30)2=(13)\Rightarrow {\left( {\tan 30^\circ } \right)^2} = \left( {\dfrac{1}{3}} \right)
As we know value of sin45\sin 45^\circ is (12)\left( {\dfrac{1}{{\sqrt 2 }}} \right) and value of cos45\cos 45^\circ is (12)\left( {\dfrac{1}{{\sqrt 2 }}} \right).
Now we know trigonometric expression 4sin260+3tan2308sin45.cos454{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ can also be written as 4(sin60)2+3(tan30)28sin45.cos454{\left( {\sin 60^\circ } \right)^2} + 3{\left( {\tan 30^\circ } \right)^2} - 8\sin 45^\circ .\cos 45^\circ . Now we will substitute the values of trigonometric ratios of various angles we have find above in 4(sin60)2+3(tan30)28sin45.cos454{\left( {\sin 60^\circ } \right)^2} + 3{\left( {\tan 30^\circ } \right)^2} - 8\sin 45^\circ .\cos 45^\circ .
4(sin60)2+3(tan30)28sin45.cos454{\left( {\sin 60^\circ } \right)^2} + 3{\left( {\tan 30^\circ } \right)^2} - 8\sin 45^\circ .\cos 45^\circ
Substitute the values of trigonometric ratios.
4×(34)+3×(13)8×(12)×(12)\Rightarrow 4 \times \left( {\dfrac{3}{4}} \right) + 3 \times \left( {\dfrac{1}{3}} \right) - 8 \times \left( {\dfrac{1}{{\sqrt 2 }}} \right) \times \left( {\dfrac{1}{{\sqrt 2 }}} \right)
Opening brackets, we get
4×34+3×138×12\Rightarrow \dfrac{{4 \times 3}}{4} + \dfrac{{3 \times 1}}{3} - \dfrac{{8 \times 1}}{2}
31+1182\Rightarrow \dfrac{3}{1} + \dfrac{1}{1} - \dfrac{8}{2}
After simplifying, we get
3+14\Rightarrow 3 + 1 - 4
44\Rightarrow 4 - 4
=0= 0
Therefore, the value of 4sin260+3tan2308sin45.cos454{\sin ^2}60^\circ + 3{\tan ^2}30^\circ - 8\sin 45^\circ .\cos 45^\circ is00.
So, the correct answer is “0”.

Note : Take care of the values of trigonometric ratios you are substituting. For solving these types of questions you need to remember all the values of trigonometric ratios. Remember to solve the problem using BODMAS (brackets, of, division, multiplication, addition, and subtraction). Check your calculations.