Solveeit Logo

Question

Question: Find the value of : \[3\tan \theta + \cot \theta = 5\cos ec\theta \]...

Find the value of : 3tanθ+cotθ=5cosecθ3\tan \theta + \cot \theta = 5\cos ec\theta

Explanation

Solution

According to the question, convert the given equation into sinθsin\theta and cosθ\cos \theta . After converting, solve the required equation using trigonometric formulas to get the result.

Formula used:
Here, formula to be used is sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta and conversion of tanθ\tan \theta , cotθ\cot \theta and cosecθ\cos ec\theta will be used.

Complete step-by-step answer:
Firstly, convert both right hand side and left hand side in terms of sinθsin\theta and cosθ\cos \theta . As, we know tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} , cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} and cosecθ=1sinθ\cos ec\theta = \dfrac{1}{{\sin \theta }} .
Given, 3tanθ+cotθ=5cosecθ3\tan \theta + \cot \theta = 5\cos ec\theta
Put all the values of tanθ\tan \theta , cotθ\cot \theta and cosecθ\cos ec\theta in the above equation.
We get, 3(sinθcosθ)+cosθsinθ=5(1sinθ)3\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right) + \dfrac{{\cos \theta }}{{\sin \theta }} = 5\left( {\dfrac{1}{{\sin \theta }}} \right)
Now, we will open all the brackets
\Rightarrow 3sinθcosθ+cosθsinθ=5sinθ\dfrac{{3\sin \theta }}{{\cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{5}{{sin\theta }}
Here, we will take the L.C.M on the left side of the above equation.
Therefore, we get
\Rightarrow Sinθ(3sinθ)+(cosθ)cosθcosθsinθ=5sinθ\dfrac{{{\mathop{\rm Sin}\nolimits} \theta \left( {3\sin \theta } \right) + \left( {\cos \theta } \right)\cos \theta }}{{\cos \theta \sin \theta }} = \dfrac{5}{{sin\theta }}
On simplifying,
\Rightarrow 3Sin2θ+cos2θcosθsinθ=5sinθ\dfrac{{3{{{\mathop{\rm Sin}\nolimits} }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = \dfrac{5}{{sin\theta }}
Again, on cancelling sinθ\sin \theta from the denominator from both sides.
We get, 3Sin2θ+cos2θcosθ=5\dfrac{{3{{{\mathop{\rm Sin}\nolimits} }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta }} = 5
By cross multiplication:
\Rightarrow 3Sin2θ+cos2θ=5cosθ3{{\mathop{\rm Sin}\nolimits} ^2}\theta + {\cos ^2}\theta = 5\cos \theta
Now, taking all the terms on the left hand side to make the right hand 0.
\Rightarrow 3Sin2θ+cos2θ5cosθ=03{{\mathop{\rm Sin}\nolimits} ^2}\theta + {\cos ^2}\theta - 5\cos \theta = 0
Converting all the terms in terms of cosθ\cos \theta by using the identity sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta which comes from the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.
So, by substituting the value of sin2θ{\sin ^2}\theta we get,
3(1cos2θ)+cos2θ5cosθ=03\left( {1 - {{\cos }^2}\theta } \right) + {\cos ^2}\theta - 5\cos \theta = 0
\Rightarrow 33cos2θ+cos2θ5cosθ=03 - 3{\cos ^2}\theta + {\cos ^2}\theta - 5\cos \theta = 0
On further simplifying we get,
\Rightarrow 32cos2θ5cosθ=03 - 2{\cos ^2}\theta - 5\cos \theta = 0 which can be written as 2cos2θ+5cosθ3=02{\cos ^2}\theta + 5\cos \theta - 3 = 0
By using factorisation method we can this quadratic equation:
\Rightarrow 2cos2θ+6cosθcosθ3=02{\cos ^2}\theta + 6\cos \theta - \cos \theta - 3 = 0
Taking out all the common values,
We get, 2cosθ(cosθ+3)1(cosθ+3)=02\cos \theta \left( {\cos \theta + 3} \right) - 1\left( {\cos \theta + 3} \right) = 0
Therefore, (cosθ+3)(2cosθ1)=0\left( {\cos \theta + 3} \right)\left( {2\cos \theta - 1} \right) = 0
Putting both the values separately equal to 0.
Firstly take, (cosθ+3)=0\left( {\cos \theta + 3} \right) = 0
Here, cosθ=3\cos \theta = - 3 which is not possible.
Secondly take, (2cosθ1)=0\left( {2\cos \theta - 1} \right) = 0
Here, cosθ=12\cos \theta = \dfrac{1}{2}
As at cosθ=12\cos \theta = \dfrac{1}{2} , θ\theta comes out to be 60 which is π3\dfrac{\pi }{3}
Or we can write in this form also, θ=2nπ±π3\theta = 2n\pi \pm \dfrac{\pi }{3}

Note: In these types of questions, we need to check whether the equation is in the form of sin and cos, as it makes the question simpler to solve. As well as we have all the trigonometric formulas in this form. So, the required value can be easily calculated.