Solveeit Logo

Question

Question: Find the value of \[2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right)\]....

Find the value of 2log4(4x)=4log2(2x)2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right).

Explanation

Solution

Here, we will start by converting the log4{\log _4} to log2{\log _2} term. We can do this by using the change-of-base formula, logax=logbxlogba{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}} in the above equation and then use the logarithm property, logbac=logbalogbc{\log _b}\dfrac{a}{c} = {\log _b}a - {\log _b}cand then the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a to simplify the equations to find the required value.

Complete step by step answer:

We are given equation
2log4(4x)=4log2(2x) ......eq.(1)2{\log _4}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right){\text{ ......eq.(1)}}
We know that the domain of log4(4x){\log _4}\left( {4 - x} \right) is 4x>04 - x > 0 and domain of log2(2x){\log _2}\left( { - 2 - x} \right) is 2x - 2 - x.
Therefore, the domain is x(,2)x \in \left( { - \infty , - 2} \right).
Let us now start by converting the log4{\log _4} to log2{\log _2} term. We can do this by using the change-of-base formula, logax=logbxlogba{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}} in the above equation, we get
2log2(4x)log22=4log2(2x)\Rightarrow 2\dfrac{{{{\log }_2}\left( {4 - x} \right)}}{{{{\log }_2}2}} = 4 - {\log _2}\left( { - 2 - x} \right)
Using the logarithm property logaa=a{\log _a}a = a, in the above equation, we get

log2(4x)=4log2(2x) log2(4x)=loge4log2(2x)  \Rightarrow {\log _2}\left( {4 - x} \right) = 4 - {\log _2}\left( { - 2 - x} \right) \\\ \Rightarrow {\log _2}\left( {4 - x} \right) = \log {e^4} - {\log _2}\left( { - 2 - x} \right) \\\

Using the logarithm property, logbac=logbalogbc{\log _b}\dfrac{a}{c} = {\log _b}a - {\log _b}c in the above expression, we get
log2(4x)=log2(e42x)\Rightarrow {\log _2}\left( {4 - x} \right) = {\log _2}\left( {\dfrac{{{e^4}}}{{ - 2 - x}}} \right)
Let us now make use of the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a.
So, on applying this rule in the left-hand side in the above equation, we get
log2(4x)=log2(e42x)\Rightarrow {\log _2}\left( {4 - x} \right) = {\log _2}\left( {\dfrac{{{e^4}}}{{ - 2 - x}}} \right)
We know if the logs are equal, then their argument must be equal in the above equation, we get
(4x)=162x\Rightarrow \left( {4 - x} \right) = \dfrac{{16}}{{ - 2 - x}}
Cross-multiplying the above equation, we get

(x4)(2x)=16 x22x8=16  \Rightarrow \left( {x - 4} \right)\left( { - 2 - x} \right) = 16 \\\ \Rightarrow {x^2} - 2x - 8 = 16 \\\

Factorizing the above equation, we get

x26x+4x24=0 (x6)(x+4)=0 x6=0 or x+4=0 x=6,4  \Rightarrow {x^2} - 6x + 4x - 24 = 0 \\\ \Rightarrow \left( {x - 6} \right)\left( {x + 4} \right) = 0 \\\ \Rightarrow x - 6 = 0{\text{ or }}x + 4 = 0 \\\ \Rightarrow x = 6, - 4 \\\

As x=6x = 6 is not in the domain,x=4x = - 4 is the solution.

Note: The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is ee.