Question
Question: Find the value of \(1{ + ^n}{C_1}\cos \theta { + ^n}{C_2}\cos 2\theta + .......{ + ^n}{C_n}\cos n\th...
Find the value of 1+nC1cosθ+nC2cos2θ+.......+nCncosnθ
A. (2cos2θ)ncos2nθ
B. 2cos22nθ
C. 2cos2n2θ
D. (2cos22θ)n
Solution
Hint – We will use binomial theorem and de Moivre’s theorem to get the given equation in question and its result, also with the little help of trigonometric identities.
Complete step-by-step answer:
We will solve the above equation by using the binomial theorem i.e.
(1+x)n=1+nC1x+nC2x2+....+nCnxn
Now, we will substitute x=cosθ+ιsinθ in above equation, where ι=−1
(1+cosθ+ιsinθ)n=1+nC1(cosθ+ιsinθ)+nC2(cosθ+ιsinθ)2+....+nCn(cosθ+ιsinθ)n … (1)
Now, we will use de Moivre’s theorem to RHS which states that: (cosθ+ιsinθ)n=cosnθ+ιsinnθ
And to LHS we will use trigonometric ‘half angle’ and ‘double angle’ identities i.e.
sin2θ=2sinθcosθ and
cos2θ=21+cosθ ⇒2cos22θ=1+cosθ
So, we will get the equation (1) as
(2cos22θ+2ιsin2θcos2θ)n=1+nC1(cosθ+ιsinθ)+nC2(cos2θ+ιsin2θ)+.....+nCn(cosnθ+ιsinnθ)
Now, by simplifying it we will get,
⇒[(2cos2θ)(cos2θ+ιsin2θ)]n=(1+nC1cosθ+nC2cos2θ+...nCncosnθ) \+ι(nC1sinθ+nC2sin2θ+...+nCnsinnθ)
We will again use de Moivre’s theorem on LHS
⇒(2cos2θ)n(cosn2θ+ιsinn2θ)=(1+nC1cosθ+nC2cos2θ+...nCncosnθ) \+ι(nC1sinθ+nC2sin2θ+...+nCnsinnθ)
Now, equate the real part from both sides.
1+nC1cosθ+nC2cos2θ+...nCncosnθ=(2cos2θ)ncosn2θ
Hence, the answer is (2cos2θ)ncos2nθ
Hence, the correct option is A.
Note – The binomial theorem tells us how to expand expressions of the form (a+b)n which we explained above. Whereas, the de Moivre’s theorem gives us a formula for computing powers of complex numbers. It is to be noted that this is the only way possible to solve this question with the help of these theorems and trigonometric identities.