Solveeit Logo

Question

Question: Find the value of \({(1+i)}^8\)....

Find the value of (1+i)8{(1+i)}^8.

Explanation

Solution

We use algebraic equation to simplify the question by placing (1+i)2=x{{\left( 1+i \right)}^{2}}=x and then we find the value of x2{{x}^{2}} and equate the value of x2{{x}^{2}} in terms of ii with the value of xx in terms of ii till we achieve the power of 88 on both sides of L.H.S and R.H.S.

Complete step-by-step answer:
Placing the value of (1+i)2=x{{\left( 1+i \right)}^{2}}=x
(1+i)2=x{{\left( 1+i \right)}^{2}}=x
1+i2+2i=x1+{{i}^{2}}+2i=x
1+(1)+2i=x1+\left( -1 \right)+2i=x
2i=x2i=x
Now placing the value of (1+i)2=x{{\left( 1+i \right)}^{2}}=x and squaring till (1+i)8{{\left( 1+i \right)}^{8}} we get:
(1+i)2=x{{\left( 1+i \right)}^{2}}=x
(((1+i)2)2)2=(x2)2{{\left( {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}
Placing the value of x=2ix=2i
(((1+i)2)2)2=(x2)2{{\left( {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}} \right)}^{2}}={{\left( {{x}^{2}} \right)}^{2}}
(((1+i)2)2)2=((2i)2)2{{\left( {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}} \right)}^{2}}={{\left( {{\left( 2i \right)}^{2}} \right)}^{2}}
(1+i)8=(2i)4{{\left( 1+i \right)}^{8}}={{\left( 2i \right)}^{4}}
(1+i)8=2×2×2×2×i×i×i×i{{\left( 1+i \right)}^{8}}=2\times 2\times 2\times 2\times i\times i\times i\times i
(1+i)8=16i4{{\left( 1+i \right)}^{8}}=16{{i}^{4}}
1+i8=16{{1+i}^8} = 16 as i2=1i^2 = -1
Hence, the value of (1+i)8=16{{\left( 1+i \right)}^{8}}=16.

Note: Students may go wrong while finding the value of the question as the L.H.S is powered by 22 three times while RHS is powered by 22 two times as the value of (1+i)2=x{{\left( 1+i \right)}^{2}}=x hence, for L.H.S base (1+i)\left( 1+i \right) there are three power 22 and for xx the power is raised by two 22.