Solveeit Logo

Question

Question: Find the value of \[1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}...

Find the value of 1+14+1448+1474812+1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty .

Explanation

Solution

Here, we need to find the value of the given expression. We will equate the terms of the given expression and the expansion of (1+x)n{\left( {1 + x} \right)^n}. We will solve the equations to get the values of xx and nn. Then, we will substitute the values of xx and nn in the binomial expansion. Further we will simplify the equation to get the required answer.
Formula Used: The binomial expansion of the sum of 1 and a number xx, raised to the power nn, is given by the formula (1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+{\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + \ldots \infty .

Complete step by step solution:
We know that the binomial expansion of the sum of 1 and a number xx, raised to the power nn, is given by the formula (1+x)n=1+nx+n(n1)x22!+n(n1)(n2)x33!+ (1){\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + \ldots \infty {\text{ }} \ldots \ldots \left( 1 \right).
Here, nn is a real number.
We will equate the terms of the expressions 1+14+1448+1474812+1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty and 1+nx+n(n1)x22!+1 + nx + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \ldots \ldots \ldots \infty .
Comparing the second terms of the expressions, we get
nx=14nx = \dfrac{1}{4}
Comparing the third terms of the expressions, we get
n(n1)x22!=1448\dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} = \dfrac{{1 \cdot 4}}{{4 \cdot 8}}
Simplifying the expression, we get
n(n1)x22=18\Rightarrow \dfrac{{n\left( {n - 1} \right){x^2}}}{2} = \dfrac{1}{8}
Multiplying both sides of the equation by 8, we get
n(n1)x22×8=18×8 4n(n1)x2=1\begin{array}{l} \Rightarrow \dfrac{{n\left( {n - 1} \right){x^2}}}{2} \times 8 = \dfrac{1}{8} \times 8\\\ \Rightarrow 4n\left( {n - 1} \right){x^2} = 1\end{array}
Rewriting the equation, we get
4nx(n1)x=1\Rightarrow 4nx\left( {n - 1} \right)x = 1
Multiplying n1n - 1 and xx in the equation, we get
4nx(nxx)=1\Rightarrow 4nx\left( {nx - x} \right) = 1
Now, we will substitute the value of nxnx in the equation.
Substituting nx=14nx = \dfrac{1}{4} in the equation, we get
4(14)(14x)=1\Rightarrow 4\left( {\dfrac{1}{4}} \right)\left( {\dfrac{1}{4} - x} \right) = 1
We will simplify this equation to get the value of xx.
Thus, we get
1(14x)=1 14x=1\begin{array}{l} \Rightarrow 1\left( {\dfrac{1}{4} - x} \right) = 1\\\ \Rightarrow \dfrac{1}{4} - x = 1\end{array}
Rewriting the equation, we get
x=141\Rightarrow x = \dfrac{1}{4} - 1
Subtracting the terms of the expression, we get the value of xx as
x=34\Rightarrow x = - \dfrac{3}{4}
Using the value of xx, we can find the value of nn.
Substituting x=34x = - \dfrac{3}{4} in the equation nx=14nx = \dfrac{1}{4}, we get
n(34)=14\Rightarrow n\left( {\dfrac{{ - 3}}{4}} \right) = \dfrac{1}{4}
Multiplying both sides by 43 - \dfrac{4}{3}, we get
n(34)(43)=14(43) n=13\begin{array}{l} \Rightarrow n\left( {\dfrac{{ - 3}}{4}} \right)\left( { - \dfrac{4}{3}} \right) = \dfrac{1}{4}\left( { - \dfrac{4}{3}} \right)\\\ \Rightarrow n = - \dfrac{1}{3}\end{array}
Therefore, we get the value of xx and nn as 34 - \dfrac{3}{4} and 13 - \dfrac{1}{3} respectively.
Now, we substitute the value of xx and nn in equation (1)\left( 1 \right).
Substituting x=34x = - \dfrac{3}{4} and n=13n = - \dfrac{1}{3} in equation (1)\left( 1 \right), we get
[1+(34)]13=1+(13)(34)+(13)[(13)1](34)22!+(13)[(13)1][(13)2](34)33!+ {\left[ {1 + \left( { - \dfrac{3}{4}} \right)} \right]^{ - \dfrac{1}{3}}} = 1 + \left( { - \dfrac{1}{3}} \right)\left( { - \dfrac{3}{4}} \right) + \dfrac{{\left( { - \dfrac{1}{3}} \right)\left[ {\left( { - \dfrac{1}{3}} \right) - 1} \right]{{\left( { - \dfrac{3}{4}} \right)}^2}}}{{2!}} + \dfrac{{\left( { - \dfrac{1}{3}} \right)\left[ {\left( { - \dfrac{1}{3}} \right) - 1} \right]\left[ {\left( { - \dfrac{1}{3}} \right) - 2} \right]{{\left( { - \dfrac{3}{4}} \right)}^3}}}{{3!}} + \ldots \infty {\text{ }}
Simplifying the equation, we get
[134]13=1+14+(13)(43)(916)2+(13)(43)(73)(2764)6+  [14]13=1+14+142+7166+ [14]13=1+14+18+796\begin{array}{l} \Rightarrow {\left[ {1 - \dfrac{3}{4}} \right]^{ - \dfrac{1}{3}}} = 1 + \dfrac{1}{4} + \dfrac{{\left( { - \dfrac{1}{3}} \right)\left( { - \dfrac{4}{3}} \right)\left( {\dfrac{9}{{16}}} \right)}}{2} + \dfrac{{\left( { - \dfrac{1}{3}} \right)\left( { - \dfrac{4}{3}} \right)\left( { - \dfrac{7}{3}} \right)\left( { - \dfrac{{27}}{{64}}} \right)}}{6} + \ldots \infty {\text{ }}\\\ \Rightarrow {\left[ {\dfrac{1}{4}} \right]^{ - \dfrac{1}{3}}} = 1 + \dfrac{1}{4} + \dfrac{{\dfrac{1}{4}}}{2} + \dfrac{{\dfrac{7}{{16}}}}{6} + \ldots \infty \\\ \Rightarrow {\left[ {\dfrac{1}{4}} \right]^{ - \dfrac{1}{3}}} = 1 + \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{7}{{96}} \ldots \infty \end{array}
Rewriting 18\dfrac{1}{8} as 1448\dfrac{{1 \cdot 4}}{{4 \cdot 8}} and 796\dfrac{7}{{96}} as 1474812\dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}}, we get
[14]13=1+14+1448+1474812+\Rightarrow {\left[ {\dfrac{1}{4}} \right]^{ - \dfrac{1}{3}}} = 1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty
The right side of the equation is the expression we need to find the value of.
Therefore, we have
1+14+1448+1474812+=[14]13\Rightarrow 1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty = {\left[ {\dfrac{1}{4}} \right]^{ - \dfrac{1}{3}}}
Simplifying the expression , we get
1+14+1448+1474812+=413\Rightarrow 1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty = {4^{\dfrac{1}{3}}}

Therefore, the value of the expression 1+14+1448+1474812+1 + \dfrac{1}{4} + \dfrac{{1 \cdot 4}}{{4 \cdot 8}} + \dfrac{{1 \cdot 4 \cdot 7}}{{4 \cdot 8 \cdot 12}} + \ldots \ldots \ldots \infty is 413{4^{\dfrac{1}{3}}}.

Note:
We need to be careful while applying the binomial expansion formula. It is common to make a mistake during the expansion of (1+x)n{\left( {1 + x} \right)^n}. Another common mistake we can make is to write the answer as [14]13{\left[ {\dfrac{1}{4}} \right]^{\dfrac{1}{3}}}. We have to remember that the term is actually [14]13{\left[ {\dfrac{1}{4}} \right]^{ - \dfrac{1}{3}}}, and not [14]13{\left[ {\dfrac{1}{4}} \right]^{\dfrac{1}{3}}}. The negative sign in the power allows us to reciprocate the expression to obtain 413{4^{\dfrac{1}{3}}}.