Solveeit Logo

Question

Mathematics Question on Laws of Exponents

Find the value of

  1. (30 × 4−1) × 22
  2. (2−1 × 4−1) ÷ 2−2
  3. (12\frac{1}{2})−2 + (13\frac{1}{3})−2 + (14\frac{1}{4})−2
  4. (3−1 +4−1 + 5−1)0
  5. {(23\frac{−2}{3})−2}2
Answer

(i) (30 × 4−1) × 22
a0 = 1 and a−m = 1am\frac{1}{a^m}
(30 × 4−1) × 22
= (1 + 14\frac{1}{4}) × 22

= [(4+1)4]×[\frac{(4 + 1)}{4}] × 22

=(54)×= (\frac{5}{4}) × 22

= 52\frac{5}{2}2 × 22 [Since 4 = 2 × 2 = 22]
= 5


(ii) (2−1 × 4−1) ÷ 2−2
(am)n = amn, a−m = 1am\frac{1}{a^m}
(2−1 × 4−1) ÷ 2−2
= [2−1 × {(2)2}−1] ÷ 2−2 [Since 4 = 2 × 2 = 22]
= (2−1 × 2−2) ÷ 2−2 [∵(am)n = amn]
= 2−3 ÷ 2−2 [∵am × an = am + n]
= 2−3−(−2) [∵am ÷ an = am−n]
= 2−3 + 2
= 2−1
= 12\frac{1}{2} [∵a−m = 1am\frac{1}{a^m}]


(iii) (12)2\+(13)2\+(14)2(\frac{1}{2})^{−2} \+ (\frac{1}{3})^{−2} \+ (\frac{1}{4})^{−2}

(ab)m=(ba)m(\frac{a}{b})^{−m} = (\frac{b}{a})^m

(12)2\+(13)2\+(14)2(\frac{1}{2})^{−2} \+ (\frac{1}{3})^{−2} \+ (\frac{1}{4})^{−2}

=(21)2\+(31)2\+(41)2= (\frac{2}{1})^2 \+ (\frac{3}{1})^2 \+ (\frac{4}{1})^2

= (2)2 + (3)2 + (4)2
= 4 + 9 + 16 = 29


(iv)(3−1 +4−1 + 5−1)0
a0 = 1 and a−m = 1am\frac{1}{a^m}
(3−1 + 4−1 + 5−1)0
=(13+14+15)0= (\frac{1}{3} + \frac{1}{4} + \frac{1}{5})^0 [Since a−m = 1am\frac{1}{a^m}]
= 1 [Since a0 = 1]


(v) {(23)2(\frac{−2}{3})^{−2}}2
a−m = 1am\frac{1}{a^m} and (ab)m=ambm(\frac{a}{b})^m = \frac{a^m}{b^m}

{(23)2(\frac{−2}{3})^{−2}}2

= {(32)2(\frac{3}{−2})^2}2 [Since a−m = 1am\frac{1}{a^m}]

={32(2)2\frac{3^2}{(−2)^2}}2 [Since (ab)m=ambm(\frac{a}{b})^m = \frac{a^m}{b^m}]

=(94)2=8116=(\frac{9}{4})^2 = \frac{81}{16}