Solveeit Logo

Question

Question: Find the value \(\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}\) \( ...

Find the value secθ+tanθ1tanθsecθ+1\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}
A)secθtanθ B)tanθsecθ C)secθ+tanθ D)1  A)\sec \theta - \tan \theta \\\ B)\tan \theta - \sec \theta \\\ C)\sec \theta + \tan \theta \\\ D)1 \\\

Explanation

Solution

Hint: Here, we will use the trigonometric identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1 to simplify the given equation and then by applying the simple formulae and operations the value is calculated.

Complete step-by-step answer:
Given, secθ+tanθ1tanθsecθ+1\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}}
AS, we know, the trigonometric identity sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1. So let us substitute the value of 1 in the numerator as sec2θtan2θ{\sec ^2}\theta - {\tan ^2}\theta , we get
secθ+tanθ(sec2θtan2θ)tanθsecθ+1\Rightarrow \dfrac{{\sec \theta + \tan \theta - ({{\sec }^2}\theta - {{\tan }^2}\theta )}}{{\tan \theta - \sec \theta + 1}}
And also we know that sec2θtan2θ=(secθ+tanθ)(secθtanθ){\sec ^2}\theta - {\tan ^2}\theta = (\sec \theta + \tan \theta )(\sec \theta - \tan \theta ). Substituting it in the above formula, we get
(secθ+tanθ)((secθ+tanθ)(secθtanθ))tanθsecθ+1\Rightarrow \dfrac{{(\sec \theta + \tan \theta ) - ((\sec \theta + \tan \theta )(\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}}
Let us take common (secθ+tanθ)(\sec \theta + \tan \theta )term in the numerator, we get
(secθ+tanθ)(1(secθtanθ))tanθsecθ+1 (secθ+tanθ)(1secθ+tanθ)tanθsecθ+1  \Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - (\sec \theta - \tan \theta ))}}{{\tan \theta - \sec \theta + 1}} \\\ \Rightarrow \dfrac{{(\sec \theta + \tan \theta )(1 - \sec \theta + \tan \theta )}}{{\tan \theta - \sec \theta + 1}} \\\
Now, from the above equation, (1secθ+tanθ)(1 - \sec \theta + \tan \theta )term gets cancel and we will be left with
secθ+tanθ\Rightarrow \sec \theta + \tan \theta
Hence, secθ+tanθ1tanθsecθ+1=secθ+tanθ\dfrac{{\sec \theta + \tan \theta - 1}}{{\tan \theta - \sec \theta + 1}} = \sec \theta + \tan \theta .
So, option C is the correct option.

Note: To solve the given problem we need to have basic knowledge about trigonometry chapter. To solve the problem we need to think about converting values and trigonometry formulas which will be helpful for us.