Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the unit vector in the direction of vector PQ\vec{PQ} ,where PP and QQ are the points (1,2,3)(1,2,3) and (4,5,6)(4,5,6) respectively.

Answer

The correct answer is:13i^+13j^+13k^.\frac{1}{\sqrt3\hat{i}}+\frac{1}{\sqrt{3}\hat{j}}+\frac{1}{\sqrt{3}\hat{k}}.
The given points are P(1,2,3)P(1,2,3),and Q(4,5,6).Q(4,5,6).
PQ=(41)i^+(52)j^+(63)k^=3i^+3j^+3k^∴\vec{PQ}=(4-1)\hat{i}+(5-2)\hat{j}+(6-3)\hat{k}=3\hat{i}+3\hat{j}+3\hat{k}
PQ=32+32+32=9+9+9=27=33|\vec{PQ}|=\sqrt{3^2+3^2+3^2}=\sqrt{9+9+9}=\sqrt{27}=3\sqrt{3}
Hence,the unit vector in the direction of PQ\vec{PQ}is
PQPQ=3i^+3j^+3k^33=13i^+13j^+13k^.\frac{\vec{PQ}}{|\vec{PQ}|}=\frac{3\hat{i}+3\hat{j}+3\hat{k}}{3\sqrt{3}}=\frac{1}{\sqrt3\hat{i}}+\frac{1}{\sqrt{3}\hat{j}}+\frac{1}{\sqrt{3}\hat{k}}.