Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the unit vector in the direction of the vector a=i^+j^+2k^.\vec{a}=\hat{i}+\hat{j}+2\hat{k}.

Answer

The correct answer is:16i^+16j^+26k^.\frac{1}{\sqrt{6}\hat{i}}+\frac{1}{\sqrt{6}\hat{j}}+\frac{2}{\sqrt{6}\hat{k}}.
The unit vector a^\hat{a} in the direction of vector a=i^+j^+2k^\vec{a}=\hat{i}+\hat{j}+2\hat{k} is given by a^=aa.\hat{a}=\frac{\vec{a}}{|a|}.
a=12+12+22=1+1+4=6|\vec{a}|=\sqrt{1^2+1^2+2^2}=\sqrt{1+1+4}=\sqrt6
a^=aa=i^+j^+2k^6=16i^+16j^+26k^.∴\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+\hat{j}+2\hat{k}}{\sqrt6}=\frac{1}{\sqrt{6}\hat{i}}+\frac{1}{\sqrt{6}\hat{j}}+\frac{2}{\sqrt{6}\hat{k}}.