Question
Question: Find the total pressure exerted by \[1.6\] g of methane and \[2.2\] gram of \[{\text{C}}{{\text{O}}_...
Find the total pressure exerted by 1.6 g of methane and 2.2 gram of CO2 contained in a 4 liter flask at 270C.
Solution
In this question, we will use ideal gas equation PTV = nTRT, total pressure, volume and temperature are given to us in question, R is universal gas constant (8.314 atm LK - 1mol - 1). To find the total number of moles, add the number of moles of methane and carbon dioxide.
Formula used: PTV = nTRT where,
PT- Total pressure exerted
nT - Total number of moles
V - Volume of system
R - Universal gas constant
T – Temperature (in Kelvin)
Complete step by step answer:
We have been given a mixture of two gases methane (CH4) and carbon dioxide (CO2).
It is given that:
Mass of {\text{C}}{{\text{H}}_{\text{4}}}$$$ = $$ 1.6gMassof{\text{C}}{{\text{O}}{\text{2}}}$$ = $$2.2gVolumeofcontainer=4LToconvertdegreeCelsiustoKelvin,wecanusetheconversion:{\text{T(in kelvin) = }}{{\text{t}}^{\text{0}}}{\text{C + 273}}.Temperature={27^ \circ }{\text{C = 300K}}Asweknowthat,Molecularmassof{\text{C}}{{\text{H}}{\text{4}}}{{ = 12 + 1 \times 4 = 16 g mo}}{{\text{l}}^{ - 1}}Molecularmassof{\text{C}}{{\text{O}}{\text{2}}}{{ = 12 + 16 \times 2 = 44 g mo}}{{\text{l}}^{{\text{ - 1}}}}No.ofmolesof{\text{C}}{{\text{H}}{\text{4}}} = \dfrac{{{\text{mass of C}}{{\text{H}}{\text{4}}}}}{{{\text{Molecular mass of C}}{{\text{H}}{\text{4}}}}}Massofmethaneisgiveninthequestionandmolecularmasshasbeencalculatedbyus.No.ofmolesof{\text{C}}{{\text{H}}{\text{4}}} = \dfrac{{{\text{1}}{\text{.6}}}}{{{\text{16}}}}Dividingwewillget:No.ofmolesof{\text{C}}{{\text{H}}{\text{4}}}=0.1molesNo.ofmolesof{\text{C}}{{\text{O}}{\text{2}}} = \dfrac{{{\text{mass of C}}{{\text{O}}{\text{2}}}}}{{{\text{Molecular mass of C}}{{\text{O}}2}}}Similarly,No.ofmolesof{\text{C}}{{\text{O}}{\text{2}}} = \dfrac{{2.2}}{{{\text{44}}}}Dividingtheaboveequations,No.ofmolesof{\text{C}}{{\text{O}}{\text{2}}}{\text{ = 0}}{\text{.05}}moles{{\text{n}}{\text{T}}}isthetotalno.ofmoleswhichcanbeobtainedbyaddingtheno.ofmolesofindividualcomponentspresentinthemixture.Hence,
{{\text{n}}{\text{T}}}{\text{ = }}{{\text{n}}{{\text{C}}{{\text{H}}{\text{4}}}}}{\text{ + }}{{\text{n}}{{\text{C}}{{\text{O}}{\text{2}}}}} \\
{{ = ;0}}{\text{.1 + 0}}{\text{.05}} \\
{\text{ = 0}}{\text{.15 moles}} \\
Useidealgasequation{{\text{P}}{\text{T}}}{\text{V = }}{{\text{n}}{\text{T}}}{\text{RT}}andrearrangetheequationbymovingVtothedenominatoronrighthandside.Now,substitutingthevalues,thataregivenandtheonewecalculated,intheaboveequationwewillget,{{\text{P}}{\text{T}}} = \dfrac{{{\text{0}}{{.15 \times 0}}{{.0821 \times 300}}}}{{\text{4}}}Solvingthiswillgive,{{\text{P}}{\text{T}}} = \dfrac{{3.6945}}{{\text{4}}}.Afterdividing,thepressurewillcomeouttobe{{\text{P}}{\text{T}}}{\text{ = 0}}{\text{.9236 atm}}Hence,thetotalpressureexertedbythesystemis{\text{0}}{\text{.9236 atm}}$.
Note:
We always use temperature only in Kelvin and not in degree Celsius. So, we need to make sure we convert the unit of the temperature. The above question is based on Dalton’s law of partial pressure that is total pressure of a mixture of gases is equal to the sum of partial pressure of each component in mixture PT = P1 + P2 + ................... + Pn. That is why in the ideal gas equation, we used a total number of moles. For a binary mixture, mixture involving 2 components (as in our question) we can calculate total no. of moles = nT = nA + nB. We can use unit of R in which unit we want to obtain the value of pressure:
R = 8.314 J K - 1mol - 1
R = 8.314 Pa LK - 1mol - 1
In terms of bar and atmosphere we can write it as,
R = 0.0821 atm LK - 1mol - 1
R = 0.083 bar LK - 1mol - 1