Solveeit Logo

Question

Question: Find the torque of a force \(\overset{\rightarrow}{F} = - 3\overset{\land}{i} + \overset{\land}{j} +...

Find the torque of a force F=3i+j+5k\overset{\rightarrow}{F} = - 3\overset{\land}{i} + \overset{\land}{j} + 5\overset{\land}{k}acting at the point r=7i+3j+k\overset{\rightarrow}{r} = 7\overset{\land}{i} + 3\overset{\land}{j} + \overset{\land}{k}:

A

14i38j+16k14\overset{\land}{i} - 38\overset{\land}{j} + 16\overset{\land}{k}

B

4i+4j+6k4\overset{\land}{i} + 4\overset{\land}{j} + 6\overset{\land}{k}

C

14i+38j16k- 14\overset{\land}{i} + 38\overset{\land}{j} - 16\overset{\land}{k}

D

21i+3j+5k- 21\overset{\land}{i} + 3\overset{\land}{j} + 5\overset{\land}{k}

Answer

14i38j+16k14\overset{\land}{i} - 38\overset{\land}{j} + 16\overset{\land}{k}

Explanation

Solution

τ=r×F=(7i^+3j^+k^)×(3i^+j^+5k^)\overset{\rightarrow}{\tau} = \overset{\rightarrow}{r} \times \overset{\rightarrow}{F} = (7\widehat{i} + 3\widehat{j} + \widehat{k}) \times ( - 3\widehat{i} + \widehat{j} + 5\widehat{k})

\widehat{i} & \widehat{j} & \widehat{k} \\ 7 & 3 & 1 \\ - 3 & 1 & 5 \end{matrix} \right| = \widehat{i}(15 - 1) - \widehat{j}(35 + 3) + \widehat{k}(7 + 9) = 14\widehat{i} - 38\widehat{j} + 16\widehat{k}$$