Solveeit Logo

Question

Question: Find the the value given determinant \(\left| {\begin{array}{*{20}{c}} {\cos {{15}^ \circ }}&{\sin...

Find the the value given determinant \left| {\begin{array}{*{20}{c}} {\cos {{15}^ \circ }}&{\sin {{15}^ \circ }} \\\ {\sin {{75}^ \circ }}&{\cos {{75}^ \circ }} \end{array}} \right|
A.11
B. 00
C. 22
D. 33

Explanation

Solution

Hint: This question can be solved by simply solving the determinant.

Given determinant is
\left| {\begin{array}{*{20}{c}} {\cos {{15}^ \circ }}&{\sin {{15}^ \circ }} \\\ {\sin {{75}^ \circ }}&{\cos {{75}^ \circ }} \end{array}} \right|
Now on solving the determinant we get,
cos75cos15sin75sin15\cos {75^ \circ } \cdot \cos {15^ \circ } - \sin {75^ \circ } \cdot \sin {15^ \circ }
Now we know that,
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A \cdot \cos B - \sin A \cdot \sin B
Using the above equation we get,
cos(75+15) or cos(90) =0  \cos \left( {{{75}^ \circ } + {{15}^ \circ }} \right) \\\ {\text{or }}\cos \left( {{{90}^ \circ }} \right) \\\ = 0 \\\
Therefore, the correct option is (B).

Note: These types of questions can be solved by simply solving the determinant. Here in this question we simply solve the determinant and then we apply the formula of cos(A+B)\cos \left( {A + B} \right) and then we get our answer.