Question
Question: Find the the value given determinant \(\left| {\begin{array}{*{20}{c}} {\cos {{15}^ \circ }}&{\sin...
Find the the value given determinant \left| {\begin{array}{*{20}{c}}
{\cos {{15}^ \circ }}&{\sin {{15}^ \circ }} \\\
{\sin {{75}^ \circ }}&{\cos {{75}^ \circ }}
\end{array}} \right|
A.1
B. 0
C. 2
D. 3
Solution
Hint: This question can be solved by simply solving the determinant.
Given determinant is
\left| {\begin{array}{*{20}{c}}
{\cos {{15}^ \circ }}&{\sin {{15}^ \circ }} \\\
{\sin {{75}^ \circ }}&{\cos {{75}^ \circ }}
\end{array}} \right|
Now on solving the determinant we get,
cos75∘⋅cos15∘−sin75∘⋅sin15∘
Now we know that,
cos(A+B)=cosA⋅cosB−sinA⋅sinB
Using the above equation we get,
cos(75∘+15∘) or cos(90∘) =0
Therefore, the correct option is (B).
Note: These types of questions can be solved by simply solving the determinant. Here in this question we simply solve the determinant and then we apply the formula of cos(A+B) and then we get our answer.