Solveeit Logo

Question

Question: Find the term independent of \(x\)in the expansion of \({\left( {{x^3} - \dfrac{3}{{{x^2}}}} \righ...

Find the term independent of xxin the expansion of
(x33x2)15{\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}

Explanation

Solution

Hint: Use binomial expansion and equate the power of x to zero.

As we know according to Binomial expansion, the expansion of
(ba)n=r=0nnCrbnr(a)r{\left( {b - a} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{b^{n - r}}{{\left( { - a} \right)}^r}}
So, on comparing b=x3, a=3x2, n=15b = {x^3},{\text{ }}a = \dfrac{3}{{{x^2}}},{\text{ }}n = 15
(x33x2)15=r=01515Cr(x3)15r(3x2)r =r=01515Cr(x)453r(1)r(3)r(x)2r=r=01515Cr(x)455r(1)r(3)r  \Rightarrow {\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( {{x^3}} \right)}^{15 - r}}{{\left( { - \dfrac{3}{{{x^2}}}} \right)}^r}} \\\ = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 3r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}{{\left( x \right)}^{ - 2r}}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} \\\
Now, we want the term independent of xx
So, put the power of xxin the expansion of (x33x2)15{\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} equal to zero.
455r=0 5r=45 r=9  \Rightarrow 45 - 5r = 0 \\\ \Rightarrow 5r = 45 \\\ \Rightarrow r = 9 \\\
So, put r=9,r = 9,in r=01515Cr(x)455r(1)r(3)r\sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} we have
r=01515Cr(x)455r(1)r(3)r=15C9(x)0(1)9(3)9 15C9(3)9  \Rightarrow \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} = {}^{15}{C_9}{\left( x \right)^0}{\left( { - 1} \right)^9}{\left( 3 \right)^9} \\\ \Rightarrow - {}^{15}{C_9}{\left( 3 \right)^9} \\\
So, this is the required term independent of xx in the expansion of (x33x2)15{\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}.

Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the general expansion of (ba)n{\left( {b - a} \right)^n}, then in the expansion put the power of xx equal to zero, and calculate the value of rr, then put this value of rr in the expansion we will get the required term which is independent of xx.