Solveeit Logo

Question

Question: Find the term independent of x in\[{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{2...

Find the term independent of x in(2x123x13)20{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}. Choose the correct option,
A. 20C86824{}^{20}{{C}_{8}}\bullet {{6}^{8}}\bullet {{2}^{4}}
B. 20C82838{}^{20}{{C}_{8}}\bullet {{2}^{8}}\bullet {{3}^{8}}
C. 20C86834{}^{20}{{C}_{8}}\bullet {{6}^{8}}\bullet {{3}^{4}}
D. 20C12612{}^{20}{{C}_{12}}\bullet {{6}^{12}}

Explanation

Solution

Expand the given expression using the expansion formula(a+b)n=r=0nnCra(nr)br{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}. Here a=2x12,b=3x13a=2{{x}^{\dfrac{1}{2}}},\,\,b=3{{x}^{-\dfrac{1}{3}}}and n=20n=20. Next, we know that the r+1r+1th term of this expansion is given as: Tr+1=nCra(nr)br{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{\left( n-r \right)}}{{b}^{r}}. So here we have to find the total power of x in terms of r, and then make this total power zero (i.e, x0{{x}^{0}} ) in order to find the value of r. Then we can find the term and the value of that term which is independent of x.

Complete step-by-step answer:
In the question, we have to find the term independent of x in the expansion of (2x123x13)20{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}.
So here we can use the binomial expansion. The binomial expansion of expression of the form (a+b)n{{\left( a+b \right)}^{n}}is given as(a+b)n=r=0nnCra(nr)br{{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}}. Here a and b can be a variable or a constant. And the power n can be an integer or a fraction. Now, the expression that we have is (2x123x13)20{{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}. So on comparing with the form (a+b)n{{\left( a+b \right)}^{n}} we get a=2x12,b=3x13a=2{{x}^{\dfrac{1}{2}}},\,\,b=3{{x}^{-\dfrac{1}{3}}}and n=20n=20. So now when we expand the expression, we have:

& \Rightarrow {{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\\ & \Rightarrow {{\left( 2{{x}^{\dfrac{1}{2}}}-3{{x}^{-\dfrac{1}{3}}} \right)}^{20}}=\sum\limits_{r=0}^{20}{{}^{20}{{C}_{r}}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\\ \end{aligned}$$ Next, we need to find the power of x in the expression $${{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}}$$. So that is calculated as follows: $$\begin{aligned} & \Rightarrow \left( {{x}^{\dfrac{20-r}{2}}} \right)\left( {{x}^{-\dfrac{r}{3}}} \right) \\\ & \Rightarrow {{x}^{\dfrac{20-r}{2}-\dfrac{r}{3}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{x}^{a}}\times {{x}^{b}}={{x}^{a+b}} \\\ & \Rightarrow {{x}^{\dfrac{60-3r-2r}{6}}} \\\ & \Rightarrow {{x}^{\dfrac{60-5r}{6}}} \\\ \end{aligned}$$ Now, the power of x is zero, when we have: $$\begin{aligned} & \Rightarrow {{x}^{\dfrac{60-5r}{6}}}={{x}^{0}} \\\ & \Rightarrow \dfrac{60-5r}{6}=0 \\\ & \Rightarrow 60-5r=0 \\\ & \Rightarrow r=12 \\\ \end{aligned}$$ So this means that $$r=12$$. Next, we know that the $$r+1$$th term of this expansion is given as: $$\begin{aligned} & \Rightarrow {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{\left( n-r \right)}}{{b}^{r}} \\\ & \Rightarrow {{T}_{r+1}}={}^{20}{{C}_{r}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-r \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{r}} \\\ \end{aligned}$$. So, we have $$r+1=13$$th term that is independent of x. Now, the value of this term when $$r=12$$ is; $$\begin{aligned} & \Rightarrow {{T}_{12+1}}={}^{20}{{C}_{12}}{{\left( 2{{x}^{\dfrac{1}{2}}} \right)}^{\left( 20-12 \right)}}{{\left( 3{{x}^{-\dfrac{1}{3}}} \right)}^{12}} \\\ & \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 20-12 \right)}}{{\left( 3 \right)}^{12}}{{x}^{0}} \\\ & \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\\ \end{aligned}$$ Next, we know that $${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$$so we can write $$\begin{aligned} & \Rightarrow {{T}_{13}}={}^{20}{{C}_{12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\\ & \Rightarrow {{T}_{13}}={}^{20}{{C}_{20-12}}{{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{12}} \\\ & \Rightarrow {{T}_{13}}={}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {{\left( 2 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{\left( 8 \right)}}={{\left( 6 \right)}^{\left( 8 \right)}} \\\ \end{aligned}$$ So here we see that the value of the 13 th term is independent of x and is $${}^{20}{{C}_{8}}{{\left( 6 \right)}^{\left( 8 \right)}}{{\left( 3 \right)}^{4}}$$. Hence the correct answer is option C. **Note:** The general term of the expansion of the form $${{\left( a+b \right)}^{n}}$$ does not represent the r th term but r+1 th term. Also, we have to be careful to find the total power and then make it zero to find the term independent of x. Also, we are applying the exponent rule $${{x}^{a}}\times {{x}^{b}}={{x}^{a+b}}$$, then we have to be careful with the negative powers.