Solveeit Logo

Question

Question: Find the surface area of the solid generated by the revolution of the asteroid \({{x}^{{2}/{3}\;}}+{...

Find the surface area of the solid generated by the revolution of the asteroid x2/3  +y2/3  =a2/3  {{x}^{{2}/{3}\;}}+{{y}^{{2}/{3}\;}}={{a}^{{2}/{3}\;}} about the xx axis.

Explanation

Solution

Here we have to calculate the surface area of the solid generated by the revolution of the asteroid x2/3  +y2/3  =a2/3  {{x}^{{2}/{3}\;}}+{{y}^{{2}/{3}\;}}={{a}^{{2}/{3}\;}} about the x-axis. We will calculate the surface area by using integration. We will substitute the value x=acos3tx=a{{\cos }^{3}}t and y=asin3ty=a{{\sin }^{3}}t , and we will find the appropriate limits for integration.
The result which we will get after integration will be the required surface area of the solid generated.
Complete step-by-step answer:
The given asteroid is x2/3  +y2/3  =a2/3  {{x}^{{2}/{3}\;}}+{{y}^{{2}/{3}\;}}={{a}^{{2}/{3}\;}}. First we will substitute the value of xx as acos3taco{{s}^{3}}t and yy as asin3ta{{\sin }^{3}}ti.e.
x=acos3tx=a{{\cos }^{3}}t
y=asin3ty=a{{\sin }^{3}}t
The given asteroid is symmetrical about the xx axis.
Now, we will calculate dxdt\dfrac{dx}{dt} by differentiating with respect to.
dxdt=d(acos3t)dt\Rightarrow \dfrac{dx}{dt}=\frac{d\left( a{{\cos }^{3}}t \right)}{dt}
On differentiating, we get
dxdt=3acos2tsint\Rightarrow \dfrac{dx}{dt}=-3a{{\cos }^{2}}t\sin t
Similarly, we will calculate dydt\dfrac{dy}{dt} by differentiating with respect to.
dydt=d(asin3t)dt\Rightarrow \dfrac{dy}{dt}=\dfrac{d\left( a{{\sin }^{3}}t \right)}{dt}
On differentiating, we get
dydt=3asin2tcost\Rightarrow \dfrac{dy}{dt}=3a{{\sin }^{2}}t\cos t
Now, we will calculate dsdt\dfrac{ds}{dt}, where dsdt=(dxdt)2+(dydt)2\dfrac{ds}{dt}=\sqrt{{{\left( \dfrac{dx}{dt} \right)}^{2}}+{{\left( \dfrac{dy}{dt} \right)}^{2}}}
We will put the value of dxdt\dfrac{dx}{dt} and dydt\dfrac{dy}{dt} here
Thus, dsdt=(3acos2tsint)2+(3asin2tcost)2\dfrac{ds}{dt}=\sqrt{{{\left( -3a{{\cos }^{2}}t\sin t \right)}^{2}}+{{\left( 3a{{\sin }^{2}}t\cos t \right)}^{2}}}
We will calculate the squares of the terms.
dsdt=9a2cos4tsin2t+9a2sin4tcos2t\dfrac{ds}{dt}=\sqrt{9{{a}^{2}}{{\cos }^{4}}t{{\sin }^{2}}t+9{{a}^{2}}{{\sin }^{4}}t{{\cos }^{2}}t}
On further simplification, we get
dsdt=3asintcostcos2t+sin2t\Rightarrow \dfrac{ds}{dt}=3a\sin t\cos t\sqrt{{{\cos }^{2}}t+{{\sin }^{2}}t}
We know from trigonometric identities,
cos2t+sin2t=1{{\cos }^{2}}t+{{\sin }^{2}}t=1
Thus, dsdt\dfrac{ds}{dt}becomes;
dsdt=3asintcost\dfrac{ds}{dt}=3a\sin t\cos t
We will find the limits of tt using the limits of xx and yy.
As the value of xx is varying from a-a to aa.
We will find the limit of tt using x=acos3tx=a{{\cos }^{3}}t.
Therefore, value of tt when xx is aa is
a=acos3t t=0 \begin{aligned} & a=a{{\cos }^{3}}t \\\ & t=0 \\\ \end{aligned}
Therefore, value of tt when xx is a-a is
a=acos3t t=π \begin{aligned} & -a=a{{\cos }^{3}}t \\\ & t=\pi \\\ \end{aligned}
Thus, tt is varying from 00 to π\pi .
The surface area of the solid generated =0π2πxdsdt.dt=\int\limits_{0}^{\pi }{2\pi x\dfrac{ds}{dt}.dt}
On simplifying the integration, we get
The surface area of the solid generated =20π22πxdsdt.dt=2\int\limits_{0}^{\dfrac{\pi }{2}}{2\pi x\dfrac{ds}{dt}.dt}
On putting the value ofdsdt\dfrac{ds}{dt} and xx, we get
The surface area of the solid generated=20π22πa.cos3t.3asintcostdt=2\int\limits_{0}^{\dfrac{\pi }{2}}{2\pi a.{{\cos }^{3}}t.3a\sin t\cos tdt}
Taking constants out of integration, we get
The surface area of the solid generated =12πa20π2sintcos4tdt=12\pi {{a}^{2}}\int\limits_{0}^{\dfrac{\pi }{2}}{\sin t{{\cos }^{4}}tdt}
Let cost\cos t be vv,so asint-a\sin t will become dvdv. The limits become cos(0)=1\cos \left( 0 \right)=1 to cosπ2=0\cos \dfrac{\pi }{2}=0.
Therefore,
The surface area of the solid generated =12πa210v4dv=12\pi {{a}^{2}}\int\limits_{1}^{0}{-{{v}^{4}}}dv
On integration, we get
The surface area of the solid generated
=12πa2(v55)10 =12πa2(015) =125πa2 \begin{aligned} & =-12\pi {{a}^{2}}\left( \dfrac{{{v}^{5}}}{5} \right)_{1}^{0} \\\ & =-12\pi {{a}^{2}}\left( \dfrac{0-1}{5} \right) \\\ & =\dfrac{12}{5}\pi {{a}^{2}} \\\ \end{aligned}
Thus, the required surface area is 125πa2\dfrac{{12}}{5}\pi {a^2}

Note: Here we have used the substitution method of integration. The limit will be changed after substituting the value and it will depend on the substituted value. We will first put the upper limit and then the lower limit in the integration. We should be careful while substituting the value.