Solveeit Logo

Question

Question: Find the sum to \[n\] terms of the sequence \[8,88,888,8888,...............\]...

Find the sum to nn terms of the sequence 8,88,888,8888,...............8,88,888,8888,...............

Explanation

Solution

Hint: A sequence is an ordered list of numbers. And the dots mean to continue forward in the pattern established in the given sequence. Also, each term in the sequence is called a term.

Step by step solution:
The given sequence is 8,88,888,8888,...............8,88,888,8888,...............
Let the sum of the given nnterms are Sn{S_n}
i.e. Sn=8+88+888+8888+...........................+n terms{S_n} = 8 + 88 + 888 + 8888 + ........................... + n{\text{ terms}}
Taking out 88common in all terms we get
Sn=8(1+11+111+1111..............................n terms){S_n} = 8\left( {1 + 11 + 111 + 1111..............................n{\text{ terms}}} \right)
Multiplying and dividing with 99in numerator and denominator we get
Sn=89(9+99+999+9999+..................n terms){S_n} = \dfrac{8}{9}\left( {9 + 99 + 999 + 9999 + ..................n{\text{ terms}}} \right)
We can rewrite this as

Sn=89[(101)+(1001)+(10001)+.......................................n terms] Sn=89[(101)+(1021)+(1031)+...............................n terms] {S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) + .......................................n{\text{ terms}}} \right] \\\ {S_n} = \dfrac{8}{9}\left[ {\left( {10 - 1} \right) + \left( {{{10}^2} - 1} \right) + \left( {{{10}^3} - 1} \right) + ...............................n{\text{ terms}}} \right] \\\

Separating the terms, we get

{1 + 1 + 1 + 1 + ...............n{\text{ terms}}} \right)} \right]$$ We know that if $$n$$ terms are in G.P. with a common ratio $$r$$and first term $$a$$ then the sum of the $$n$$terms is equal to $$\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$$ when $$r > 1$$ Since here $$a = 10,{\text{ }}r = 10$$ and sum of $$n$$ one`s is equal to $$n$$.Then the sum of $$n$$ terms is equal to

{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{{10 - 1}} - n} \right] \\
\\
{S_n} = \dfrac{8}{9}\left[ {\dfrac{{10\left( {{{10}^n} - 1} \right)}}{9} - n} \right] \\
\\
{S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n \\
\\

$$\therefore {S_n} = \dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n$$ Therefore, the sum of the terms $$8,88,888,8888,...............$$ is $$\dfrac{{80}}{{81}}\left[ {{{10}^n} - 1} \right] - \dfrac{8}{9}n$$. Note: In these types of problems first rewrite the given sequence so the they are in some progressions like A.P., G.P. or in H.P. By doing this we can sum up them easily by using the known formulae