Solveeit Logo

Question

Mathematics Question on geometric progression

Find the sum to indicated number of terms in each of the geometric progressions in 7,21,37,\sqrt{7},\sqrt{21},3\sqrt{7}, ... n terms.

Answer

The given G.P. is 7,21,37,\sqrt{7},\sqrt{21},3\sqrt{7}, ...

Here, a = 7\sqrt{7}

r = 217=3\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}

Sn = a(1rn)1r\frac{a(1-r^n)}{1-r}

∴ Sn = 7[1(3)n]13\frac{\sqrt7[1-({\sqrt3})n]}{1-\sqrt3}

= 7[1(3)n]13×1+31+3\frac{\sqrt{7}[1-(\sqrt{3})n]}{1-\sqrt{3}}\times\frac{1+\sqrt{3}}{1+\sqrt{3}} (By rationalizing)

= 7(1+3)[1(3n]13\frac{\sqrt{7}(1+\sqrt{3})[1-(\sqrt{3}n]}{1-3}

= 7(1+3)2[1(3)n2]-\frac{\sqrt{7}(1+\sqrt{3})}{2[\frac{1-(3)n}{2}]}

= 7(1+3)2[(3)n21]\frac{\sqrt{7}(1+\sqrt{3})}{2\bigg[\frac{(3)n}{2}{-1}\bigg]}