Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the sum of the vectors a=i^2j^+k^,b=2i^+4j^+5k^\vec{a}=\hat{i}-2\hat{j}+\hat{k},\vec{b}=-2\hat{i}+4\hat{j}+5\hat{k} and c=i^6j^7k^.\vec{c}=\hat{i}-6\hat{j}-7\hat{k}.

Answer

The correct answer is:4j^k^-4\hat{j}-\hat{k}
The given vectors are a=i^2j^+k^,b=2i^+4j^+5k^\vec{a}=\hat{i}-2\hat{j}+\hat{k},\vec{b}=-2\hat{i}+4\hat{j}+5\hat{k} and c=i^6j^7k^.\vec{c}=\hat{i}-6\hat{j}-7\hat{k}.
a+b+c=(12+1)i^+(2+46)j^+(1+57)k^∴\vec{a}+\vec{b}+\vec{c}=(1-2+1)\hat{i}+(-2+4-6)\hat{j}+(1+5-7)\hat{k}
=0.i^4j^1.k^=0.\hat{i}-4\hat{j}-1.\hat{k}
=4j^k^=-4\hat{j}-\hat{k}