Solveeit Logo

Question

Question: Find the sum of the series whose \({{n}^{th}}\) term is \({{n}^{2}}\left( {{n}^{2}}-1 \right)\)....

Find the sum of the series whose nth{{n}^{th}} term is n2(n21){{n}^{2}}\left( {{n}^{2}}-1 \right).

Explanation

Solution

Use the summation of special series n2\sum{{{n}^{2}}} and n4\sum{{{n}^{4}}} to get the sum of nn terms of the given series.

Complete Step-by-step answer:

Let us suppose the given nth{{n}^{th}}term i.e., n2(n21){{n}^{2}}\left( {{n}^{2}}-1 \right) be Tn{{T}_{n}}. Hence,

Tn=n2(n21){{T}_{n}}={{n}^{2}}\left( {{n}^{2}}-1 \right)…………………………………………..(i)

Now, for getting sum of this series we can apply summation to given such as

n=1nTn=n=1nn2(n21)\sum\limits_{n=1}^{n}{{{T}_{n}}}=\sum\limits_{n=1}^{n}{{{n}^{2}}\left( {{n}^{2}}-1 \right)}………………………………………….(ii)

Series can be given as

12(121)+22(221)+32(321)+42(421)+..............n2(n21){{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)

Let us represent this series with Sn{{S}_{n}}. Hence, we get

Sn=12(121)+22(221)+32(321)+42(421)+..............n2(n21){{S}_{n}}={{1}^{2}}\left( {{1}^{2}}-1 \right)+{{2}^{2}}\left( {{2}^{2}}-1 \right)+{{3}^{2}}\left( {{3}^{2}}-1 \right)+{{4}^{2}}\left( {{4}^{2}}-1 \right)+..............{{n}^{2}}\left( {{n}^{2}}-1 \right)

Sn=(1412)+(2422)+(3432)+(4442)+.............(n4n2)\Rightarrow {{S}_{n}}=\left( {{1}^{4}}-{{1}^{2}} \right)+\left( {{2}^{4}}-{{2}^{2}} \right)+\left( {{3}^{4}}-{{3}^{2}} \right)+\left( {{4}^{4}}-{{4}^{2}} \right)+.............\left( {{n}^{4}}-{{n}^{2}} \right)

Now, we can simplify the above series by taking 14,24,34.........n4{{1}^{4}},{{2}^{4}},{{3}^{4}}.........{{n}^{4}} in one bracket and 12,22,32.........n2{{1}^{2}},{{2}^{2}},{{3}^{2}}.........{{n}^{2}}in another; Hence, we get

Sn=(14+24+34+.........n4)(12+22+32+.........n2){{S}_{n}}=\left( {{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.........{{n}^{4}} \right)-\left( {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}} \right)……………………………….(iii)

Now, we know the identities of summation of special series as

n=1nn2=12+22+32+.........n2=n(n+1)(2n+1)6\sum\limits_{n=1}^{n}{{{n}^{2}}}={{1}^{2}}+{{2}^{2}}+{{3}^{2}}+.........{{n}^{2}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}

n=1nn=1+2+3+........n=n(n+1)2\sum\limits_{n=1}^{n}{n}=1+2+3+........n=\dfrac{n\left( n+1 \right)}{2}

n=1nn3=13+23+33+........n3=n2(n+1)24\sum\limits_{n=1}^{n}{{{n}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+........{{n}^{3}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}

n=1nn4=14+24+34+........n4=n(n+1)(2n+1)(3n2+3n1)30\sum\limits_{n=1}^{n}{{{n}^{4}}}={{1}^{4}}+{{2}^{4}}+{{3}^{4}}+........{{n}^{4}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}

So, we can put values of n4\sum{{{n}^{4}}}and n2\sum{{{n}^{2}}}from above equations to equations (iii); Hence, we get

Sn=n(n+1)(2n+1)(3n2+3n1)30n(n+1)(2n+1)6{{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-1 \right)}{30}-\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}

Here, we can take n(n+1)(2n+1)6\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} as common for further simplify the given equation in Sn{{S}_{n}}. Hence, we get

Sn=n(n+1)(2n+1)6[3n2+3n1511]{{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right] Sn=n(n+1)(2n+1)6[3n2+3n1511]{{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1}{5}-\dfrac{1}{1} \right]

Taking L.C.M. in bracket, we get

Sn=n(n+1)(2n+1)6[3n2+3n155]{{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\left[ \dfrac{3{{n}^{2}}+3n-1-5}{5} \right]

Sn=n(n+1)(2n+1)(3n2+3n6)30\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( 3{{n}^{2}}+3n-6 \right)}{30}

Now, taking ‘3’ as common from 3n2+3n63{{n}^{2}}+3n-6, we get

Sn=3n(n+1)(2n+1)(n2+n2)30{{S}_{n}}=\dfrac{3n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{30}

Sn=n(n+1)(2n+1)(n2+n2)10\Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( {{n}^{2}}+n-2 \right)}{10}………………………………………….(iv)

Now, we can factorize n2+n2{{n}^{2}}+n-2 by splitting middle term ‘nn’ as ‘2nn2n-n’ to simplify ‘Sn{{S}_{n}}’ further:-

n2+n2=n2+2nn2{{n}^{2}}+n-2={{n}^{2}}+2n-n-2

n2+n2=n(n+2)1(n+2)\Rightarrow {{n}^{2}}+n-2=n\left( n+2 \right)-1\left( n+2 \right)

n2+n2=(n1)(n+2)\Rightarrow {{n}^{2}}+n-2=\left( n-1 \right)\left( n+2 \right)

Hence, equation (iv) can be further simplified as

Sn=n(n+1)(2n+1)(n1)(n+2)10{{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)\left( n-1 \right)\left( n+2 \right)}{10}

Now, we can replace (n1)(n+1)\left( n-1 \right)\left( n+1 \right) by n21{{n}^{2}}-1 using algebraic identity (ab)(a+b)=(a2b2)\left( a-b \right)\left( a+b \right)=\left( {{a}^{2}}-{{b}^{2}} \right) . Hence, we get

Sn=n(n+2)(2n+1)(n21)10{{S}_{n}}=\dfrac{n\left( n+2 \right)\left( 2n+1 \right)\left( {{n}^{2}}-1 \right)}{10}

Note: As we generally do not use the special series 14+24+34+.......n4{{1}^{4}}+{{2}^{4}}+{{3}^{4}}+.......{{n}^{4}} in the problems of sequence and series chapter.
One can prove the summation of n4\sum{{{n}^{4}}} as follows: -
We have
(n+1)5n5=5n410n3+10n25n+1{{\left( n+1 \right)}^{5}}-{{n}^{5}}=5{{n}^{4}}-10{{n}^{3}}+10{{n}^{2}}-5n+1
Now, put n=1,2,3,....nn=1,2,3,....n and add all the equations to get summation as
2515=5141013+101251+1{{2}^{5}}-{{1}^{5}}=5\cdot {{1}^{4}}-10\cdot {{1}^{3}}+10\cdot {{1}^{2}}-5\cdot 1+1
3525=5241023+102252+1{{3}^{5}}-{{2}^{5}}=5\cdot {{2}^{4}}-10\cdot {{2}^{3}}+10\cdot {{2}^{2}}-5\cdot 2+1
4535=5341033+102353+1{{4}^{5}}-{{3}^{5}}=5\cdot {{3}^{4}}-10\cdot {{3}^{3}}+10\cdot {{2}^{3}}-5\cdot 3+1
Till ‘n’ terms
Now, add all these equations and use n2\sum{{{n}^{2}}} and n3\sum{{{n}^{3}}} to get n4\sum{{{n}^{4}}}.
Using a direct sum of special series always makes the solution flexible and easier.