Solveeit Logo

Question

Question: Find the sum of the series for the first n brackets \( (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + \\_...

Find the sum of the series for the first n brackets (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + \\_ is
A. (n1)3+n3{(n - 1)^3} + {n^3}
B. (n1)3+8n2{(n - 1)^3} + 8{n^2}
C. (n+1)(n+2)6\dfrac{{(n + 1)(n + 2)}}{6}
D. (n+3)(n+2)12\dfrac{{(n + 3)(n + 2)}}{{12}}

Explanation

Solution

Hint : The arithmetic series is the sum of all the terms of the arithmetic progression (AP). Where, “a” is the first term and “d” is the common difference among the series.
Sn = a + (a + d) + (a + 2d) + (a + 3d) + ...... + [a + (n - 1)d] Sn =n2[2a+(n1)d] Sn =n2[a+l]  {S_n}{\text{ = a + (a + d) + (a + 2d) + (a + 3d) + }}......{\text{ + [a + (n - 1)d]}} \\\ {{\text{S}}_{n{\text{ }}}} = \dfrac{n}{2}[2a + (n - 1)d] \\\ {{\text{S}}_{n{\text{ }}}} = \dfrac{n}{2}[a + l] \\\
Where “a” is the first term and “l” is the last time.

Complete step-by-step answer :
Given series is - (1) + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + \\_
Just observe the above series and take out the very first term of each of the brackets.
1,2,5,10,.......tn1,2,5,10,.......{t_n}
Now, take the sum of the above terms by using the summation of the series.
Sn=1+2+5+10+.......+tn ..... (i){S_n} = 1 + 2 + 5 + 10 + ....... + {t_n}{\text{ }}.....{\text{ (i)}}
The above equation can be re-written as by adding zero ahead of the addition of all other terms.
Sn=0+1+2+5+10+.......+tn1 + tn ..... (ii){S_n} = 0 + 1 + 2 + 5 + 10 + ....... + {t_{n - 1}}{\text{ + }}{t_n}{\text{ }}.....{\text{ (ii)}}
Subtract the equation (ii) from the equation (i)
0=1+1+3+5+.....+(n1) terms - tn\Rightarrow 0 = 1 + 1 + 3 + 5 + ..... + (n - 1){\text{ terms - }}{{\text{t}}_n}
When any term is moved from one side to the other side, the sign also changes from positive to negative and vice versa.
tn=1+[1+3+5+.....+(n1) terms ]\Rightarrow {t_n} = 1 + [1 + 3 + 5 + ..... + (n - 1){\text{ terms ]}}
Let us assume that –
tn=1+Sn\Rightarrow {t_n} = 1 + {S_n} ...... (A)
Now, observe the second part of the equation- here all the terms have common differences so apply formula for the summation of the arithmetic progression.
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}[2a + (n - 1)d]
Place the values in the standard formula –
Where, a=1 and d = 2 also, n = n - 1a = 1{\text{ and d = 2 also, n = n - 1}}
Sn=n12[2(1)+(n11)2]{S_n} = \dfrac{{n - 1}}{2}[2(1) + (n - 1 - 1)2]
Simplify the above equation –
Sn=n12[2+(n2)2] Sn=n12[2+2n4]   {S_n} = \dfrac{{n - 1}}{2}[2 + (n - 2)2] \\\ \Rightarrow {S_n} = \dfrac{{n - 1}}{2}[2 + 2n - 4] \;
Directly add or subtract the like terms-
Sn=n12[2n2]\Rightarrow {S_n} = \dfrac{{n - 1}}{2}[2n - 2]
Take common factor in the above equation-
Sn=n12×2[n1]\Rightarrow {S_n} = \dfrac{{n - 1}}{2} \times 2[n - 1]
Same terms from the numerator and the denominator cancel each other.
Sn=(n1)(n1) Sn=(n1)2   \Rightarrow {S_n} = (n - 1)(n - 1) \\\ \Rightarrow {S_n} = {(n - 1)^2} \;
Place the above value in the equation (A)
tn=1+(n1)2{t_n} = 1 + {(n - 1)^2}
Expand the above bracket-
tn=1+n22n+1{t_n} = 1 + {n^2} - 2n + 1
Simplify the above equation –
tn=n22n+2{t_n} = {n^2} - 2n + 2 this is the last term of the series.
Here, we want the total number of terms =(2n1)= (2n - 1)
Also, d=1,d = 1, and tn=a+(n1)d{t_n} = a + (n - 1)d
Now, the series becomes –
tn, tn+1, tn+2.......(2n1) terms{t_n},{\text{ }}{t_{n + 1}},{\text{ }}{{\text{t}}_{n + 2}}.......(2n - 1){\text{ }}terms
Here a=tn,  n = (2n - 1)   d = 1a = {t_n},\;{\text{n = (2n - 1) }}\;{\text{d = 1}}
Place the above values in the standard formula-
tn+(2n1)(1)\Rightarrow {t_n} + (2n - 1)(1)
Place values by using the equation (A) in the above equation –
n22n+2+(2n1)(1)\Rightarrow {n^2} - 2n + 2 + (2n - 1)(1)
Simplify the above equation-
n22n+2+2n1\Rightarrow {n^2} - 2n + 2 + 2n - 1
Terms with same value and opposite sign cancel each other
n2+1\Rightarrow {n^2} + 1
Now, summation of the terms with (2n1)(2n - 1) terms-
Sum =n2[a+l]= \dfrac{n}{2}[a + l]
Here, a=tn,  l = n2+1 and n = (2n - 1)a = {t_n},\;l{\text{ = }}{{\text{n}}^2} + 1{\text{ and n = (2n - 1)}}
Place in the above equation-
Sum =2n12[n22n+2+n2]= \dfrac{{2n - 1}}{2}[{n^2} - 2n + 2 + {n^2}]
Simplify the above equation-
Sum =2n12[2n22n+2]= \dfrac{{2n - 1}}{2}[2{n^2} - 2n + 2]
Take common factor –
Sum =2n12×2[n2n+1]= \dfrac{{2n - 1}}{2} \times 2[{n^2} - n + 1]
Same terms from the numerator and the denominator cancel each other.
Sum =(2n1)[n2n+1]= (2n - 1)[{n^2} - n + 1]
Simplify the above equation –
Sum
=2n[n2n+1]1[n2n+1] =2n32n2+2nn2+n1 =2n33n2+3n1   = 2n[{n^2} - n + 1] - 1[{n^2} - n + 1] \\\ = 2{n^3} - 2{n^2} + 2n - {n^2} + n - 1 \\\ = 2{n^3} - 3{n^2} + 3n - 1 \;
The above equation can be written as-
By using the standard formula - (ab)3=a3b33ab(ab){(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)
2n33n2+3n1=n3+n33n2+3n1 2n33n2+3n1=n3+n3(1)33n(n1) 2n33n2+3n1=n3+(n1)3  2{n^3} - 3{n^2} + 3n - 1 = {n^3} + \underline {{n^3} - 3{n^2} + 3n - 1} \\\ 2{n^3} - 3{n^2} + 3n - 1 = {n^3} + \underline {{n^3} - {{(1)}^3} - 3n(n - 1)} \\\ 2{n^3} - 3{n^2} + 3n - 1 = {n^3} + {(n - 1)^3} \\\
So, the correct answer is “Option A”.

Note : The above question can be solved by using trial and error method taking the given multiple options and place the values in it.
For Example: Take option (A) given as (n1)3+n3{(n - 1)^3} + {n^3}
For n=1n = 1
Given that the sum of the terms in the first bracket is =1= 1
Place the values-
(n1)3+n3=(11)3+(1)3=0+1=1{(n - 1)^3} + {n^3} = {(1 - 1)^3} + {(1)^3} = 0 + 1 = 1
For n=2n = 2
Given that the sum of the terms in the first bracket is =2= 2
Place the values-
(n1)3+n3=(21)3+(2)3=1+8=9{(n - 1)^3} + {n^3} = {(2 - 1)^3} + {(2)^3} = 1 + 8 = 9
For n=3n = 3
Given that the sum of the terms in the first bracket is =2= 2
Place the values-
(n1)3+n3=(31)3+(3)3=8+27=35{(n - 1)^3} + {n^3} = {(3 - 1)^3} + {(3)^3} = 8 + 27 = 35
Hence, the taken option (A) is the correct answer.