Solveeit Logo

Question

Mathematics Question on Sequence and series

Find the sum of the sequence 7,77,777,7777,...7, 77, 777,7777,... to nn terms.

A

79[10(10n1)9n]\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]

B

79[10(10n+1)9n]\frac{7}{9}\left[\frac{10\left(10^{n}+1\right)}{9}-n\right]

C

10n19\frac{10^{n}-1}{9}

D

None of these

Answer

79[10(10n1)9n]\frac{7}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]

Explanation

Solution

This is not a G.PG.P., however, we can relate it to a G.PG.P. by writing the terms as Sn=7+77+777+7777+...S_{n} = 7 + 77 + 777 + 7777 + ... to nn terms =79[9+99+999+9999+...=\frac{7}{9} [9 + 99 + 999 + 9999 + ... to nn terms]] =79[(101)+(1021)+(1031)+(1041)=\frac{7}{9} [(10 - 1 ) + ( 10^2 -1) + ( 10^3 - 1) + ( 10^4 - 1) +...n\qquad \qquad + ... n terms ] =79[(10+102+103+...n = \frac{7}{9} [(10 + 10^2 + 10^3 + ... n terms) (1+1+1+...n\qquad \qquad - ( 1 + 1 + 1 + ... n terms)] =79[10(10n1)101n]= \frac{7}{9}\left[\frac{10\left(10^{n} -1\right)}{10 - 1} -n \right] =79[10(10n1)9n] = \frac{7}{9} \left[\frac{10\left(10^{n}-1\right)}{9} -n\right].