Solveeit Logo

Question

Question: Find the sum of the real values of \[x\] satisfying the equation \[{{2}^{\left( x-1 \right)\left( {{...

Find the sum of the real values of xx satisfying the equation 2(x1)(x2+5x50)=1{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1
(a) 5-5
(b) 16
(c) 14
(d) 4-4

Explanation

Solution

In this question, in order to find the sum of the real values of xx satisfying the equation 2(x1)(x2+5x50)=1{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1 we have to first find the values of xx satisfying the equation 2(x1)(x2+5x50)=1{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1. We will use the fact that for any real value aa we have a0=1{{a}^{0}}=1. Therefore we must have the equation in the form of 2(x1)(x2+5x50)=20{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}={{2}^{0}}. Now since the function 2x{{2}^{x}} is a one-to-one function therefore we can have (x1)(x2+5x50)=0\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)=0. We will then solve this equation to find the value of xx and then add all the values to get the desired answer.

Complete step-by-step answer :
We are given an equation in variable xx, 2(x1)(x2+5x50)=1............(1){{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1............(1)
Since we know that for any real value aa we have a0=1{{a}^{0}}=1.
Therefore we have that the value of 20{{2}^{0}} is equals to 1.
Now on substituting the value of 1 as 20{{2}^{0}} in equation (1), we will get
2(x1)(x2+5x50)=20{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}={{2}^{0}}.
We also know that the function 2x{{2}^{x}} is a one-to-one function. That is
If 2a=2b{{2}^{a}}={{2}^{b}}, then we must have a=ba=b.
Now on comparing the equation 2(x1)(x2+5x50)=20{{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}={{2}^{0}} with 2a=2b{{2}^{a}}={{2}^{b}}, we will have
a=(x1)(x2+5x50)a=\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right) and b=0b=0.
Now using the above mention property of the function 2x{{2}^{x}}, we will have
(x1)(x2+5x50)=0\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)=0
Now the above equation implies that either x1=0x-1=0 or x2+5x50=0{{x}^{2}}+5x-50=0.
Now if we consider the case when x1=0x-1=0, then we have
x=1x=1
And if we consider the case when x2+5x50=0{{x}^{2}}+5x-50=0, we will have to factorise the equation x2+5x50=0{{x}^{2}}+5x-50=0 by splitting the middle term to get

& {{x}^{2}}+5x-50=0 \\\ & \Rightarrow {{x}^{2}}+10x-5x-50=0 \\\ & \Rightarrow x\left( x+10 \right)-5\left( x+10 \right)=0 \\\ & \Rightarrow \left( x+10 \right)\left( x-5 \right)=0 \\\ \end{aligned}$$ We now have $$\left( x+10 \right)\left( x-5 \right)=0$$. Therefore either we have $$x+10=0$$ or $$x-5=0$$. Therefore the possible values of $$x$$ are $$x=-10$$ or $$x=5$$. Hence in both the cases we have the following values of $$x$$ given by $$x=1,-10,5$$ which can satisfy the given equation $${{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1$$. Now on adding all the possible values of $$x$$ which can satisfy the given equation $${{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1$$, we get, $$\begin{aligned} & 1+5-10=6-10 \\\ & =-4 \end{aligned}$$ Therefore the sum of the real values of $$x$$ satisfying the equation $${{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1$$ is equals to $$-4$$. **Hence option (d) is correct.** **Note** : In this problem, in order to find the sum of the real values of $$x$$ satisfying the equation $${{2}^{\left( x-1 \right)\left( {{x}^{2}}+5x-50 \right)}}=1$$ we are using the one-to-one property of the function $${{2}^{x}}$$ . Also we are using the fact that for any real value $$a$$ we have $${{a}^{0}}=1$$.