Solveeit Logo

Question

Mathematics Question on geometric progression

Find the sum of the products of the corresponding terms of the sequences 2, 4, 8,16, 32 and 128, 32, 8, 2, 12\frac{1}{2}.

Answer

Required sum = 2×128+42\times128+4 ×32+8×8+16×2+32×12\times 32 +8\times8+16\times2+32\times \frac{1}{2}

= 64[4+2+1+12+122]64[4+2+1+\frac{1}{2}+\frac{1}{22}]

Here, 4, 2, 1, 12,122\frac{1}{2},\frac{1}{2^2} is a G.P.

First term, a = 4

Common ratio, r = 12\frac{1}{2}

It is known that, sns_n = a(1rn)1r\frac{a(1-r^n)}{1-r}

S5S_5= 4[1(12)5]112\frac {4[1-(\frac 12)^5]}{1- \frac 12} = 4[1132]12\frac{4[1-\frac{1}{32}]}{\frac{1}{2}} = 8(32132)8(\frac{32-1}{32})= 314\frac{31}{4}

∴Required sum = 64(314)64(\frac{31}{4})= (16)(31) = 496