Solveeit Logo

Question

Question: Find the sum of the n terms of the series 6+66+666+…...

Find the sum of the n terms of the series 6+66+666+…

Explanation

Solution

Hint: Use the fact that 666…6( n times 6) can be written as 69×999...9=69(10n1)\dfrac{6}{9}\times 999...9=\dfrac{6}{9}\left( {{10}^{n}}-1 \right). Hence express all the terms in the given above form. Use the fact that the sum of n terms of a G.P is given by Sn=a(rn1)r1{{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} and hence find the sum of the series.

Complete step-by-step answer:
We have Sn=6+66+666+...+(upto n terms){{S}_{n}}=6+66+666+...+\left( upto\ n\ terms \right)
Now, we know that 666...6(n times)=69(999...9)=69(10n1)666...6\left( n\ times \right)=\dfrac{6}{9}\left( 999...9 \right)=\dfrac{6}{9}\left( {{10}^{n}}-1 \right)
Hence, we have
Sn=69(1011)+69(1021)+...+69(10n1){{S}_{n}}=\dfrac{6}{9}\left( {{10}^{1}}-1 \right)+\dfrac{6}{9}\left( {{10}^{2}}-1 \right)+...+\dfrac{6}{9}\left( {{10}^{n}}-1 \right)
Taking 69\dfrac{6}{9} common from the terms of the series, we get
Sn=69(101+1021+...+10n1){{S}_{n}}=\dfrac{6}{9}\left( 10-1+{{10}^{2}}-1+...+{{10}^{n}}-1 \right)
Hence, we have
Sn=69(10+102+103+...+10nn){{S}_{n}}=\dfrac{6}{9}\left( 10+{{10}^{2}}+{{10}^{3}}+...+{{10}^{n}}-n \right)
Now the series 10+102+...+10n10+{{10}^{2}}+...+{{10}^{n}} is the sum up to n terms of the geometric progression 10,102,103,...10,{{10}^{2}},{{10}^{3}},...
Hence, we have
Sn=69(10(10n1)101n)=69(109(10n1)n){{S}_{n}}=\dfrac{6}{9}\left( \dfrac{10\left( {{10}^{n}}-1 \right)}{10-1}-n \right)=\dfrac{6}{9}\left( \dfrac{10}{9}\left( {{10}^{n}}-1 \right)-n \right), which is the required sum up to n terms of the given series.

Note: Verification:
We know that SnSn1=an{{S}_{n}}-{{S}_{n-1}}={{a}_{n}}
Now, we have
SnSn1=69(109(10n110n1+1)(n)+n1)=69(109(10n1)×91)=69(10n1){{S}_{n}}-{{S}_{n-1}}=\dfrac{6}{9}\left( \dfrac{10}{9}\left( {{10}^{n}}-1-{{10}^{n-1}}+1 \right)-\left( n \right)+n-1 \right)=\dfrac{6}{9}\left( \dfrac{10}{9}\left( {{10}^{n-1}} \right)\times 9-1 \right)=\dfrac{6}{9}\left( {{10}^{n}}-1 \right)
Also the nth term of the given series =69(10n1)=\dfrac{6}{9}\left( {{10}^{n}}-1 \right)
Hence, we have
SnSn1=an{{S}_{n}}-{{S}_{n-1}}={{a}_{n}}
Hence the answer is verified to be correct.