Solveeit Logo

Question

Question: Find the sum of the infinite series \(\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}...

Find the sum of the infinite series 34+3.54.8+3.5.74.8.12+....\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....

Explanation

Solution

Let S=34+3.54.8+3.5.74.8.12+....S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ..... Simplify the equation by adding 1 on both sides. Use the expansion (1x)pq=1+p1!(xq)+p(p+q)2!(xq)2+....{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + .... and compare its RHS with that of S to get the value of x and hence find the value of S.

Complete step by step solution:
We have an infinite series 34+3.54.8+3.5.74.8.12+....\dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....
We need to find the sum of this series.
Let’s call the sum as S.
Then we have S=34+3.54.8+3.5.74.8.12+....(1)S = \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....(1)
We will simplify the above expression by adding 1 on both the sides of the equation.
Thus, we have
1+S=1+34+3.54.8+3.5.74.8.12+....1 + S = 1 + \dfrac{3}{4} + \dfrac{{3.5}}{{4.8}} + \dfrac{{3.5.7}}{{4.8.12}} + ....
Now, RHS can be expressed as follows:
1+S=1+31!.(14)+3.52!.(14)2+3.5.73!.(14)3+....(1)1 + S = 1 + \dfrac{3}{{1!}}.(\dfrac{1}{4}) + \dfrac{{3.5}}{{2!}}.{(\dfrac{1}{4})^2} + \dfrac{{3.5.7}}{{3!}}.{(\dfrac{1}{4})^3} + ....(1)
Consider the expansion of(1x)pq{(1 - x)^{ - \dfrac{p}{q}}}
(1x)pq=1+p1!(xq)+p(p+q)2!(xq)2+....{(1 - x)^{ - \dfrac{p}{q}}} = 1 + \dfrac{p}{{1!}}(\dfrac{x}{q}) + \dfrac{{p(p + q)}}{{2!}}{(\dfrac{x}{q})^2} + ....
Comparing (1) with the expansion, we get p=3p = 3 and p+q=5p + q = 5.
q=2\Rightarrow q = 2.
Also xq=14x=12\dfrac{x}{q} = \dfrac{1}{4} \Rightarrow x = \dfrac{1}{2}
Substituting these values in the RHS of equation (1), we get
1+S=(112)32=(12)32=(2)32=221 + S = {(1 - \dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(\dfrac{1}{2})^{ - \dfrac{3}{2}}} = {(2)^{\dfrac{3}{2}}} = 2\sqrt 2
Now, subtract 1 from both the sides to get S.
Therefore, S=221S = 2\sqrt 2 - 1
That is, the sum of the given series is S=221S = 2\sqrt 2 - 1.

Note: For any real number x such thatx<1\left| x \right| < 1 and rational number n, the binomial expansion of (1+x)n{(1 + x)^n} is given by
(1+x)n=1+nx+n(n1)2!x2+....+n(n1)(n2)....(nr+1)r!xr+.....{(1 + x)^n} = 1 + nx + \dfrac{{n(n - 1)}}{{2!}}{x^2} + .... + \dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}{x^r} + .....
Where n(n1)(n2)....(nr+1)r!\dfrac{{n(n - 1)(n - 2)....(n - r + 1)}}{{r!}}is the coefficient of therth{r^{th}}term of the series