Solveeit Logo

Question

Question: Find the sum of the given expression. \[\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+...

Find the sum of the given expression.
tanxtan2x+tan2xtan3x+.......+tannxtan(n+1)x\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x.

Explanation

Solution

Hint: Use the trigonometric formula of tan(ab)\tan \left( a-b \right). Expand the formula and find the expression for tana\tan aand tanb\tan b. Substitute in this expression for each term. And finally add and simplify them to get the sum.

Complete step-by-step answer:
We have been asked to find the sum of, tanxtan2x+tan2xtan3x+.......+tannxtan(n+1)x\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x.
If we take the first expression, tanxtan2x\tan x\tan 2x, there is a difference of x in these 2 terms.
Similarly, taking the 2nd{{2}^{nd}}expression, tan2xtan3x\tan 2x\tan 3x, there is a difference of x.
Now let us use the trigonometric formula to solve the expression.
tan(ab)=tanatanb1+tanatanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}
Now let us rearrange the formula, by cross multiplying them.
tan(ab)=tanatanb1+tanatanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}

& 1+\tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)} \\\ & \tan a\tan b=\dfrac{\tan a-\tan b}{\tan \left( a-b \right)}-1 \\\ & \therefore \tan a\tan b=\dfrac{\tan a-\tan b-\tan \left( a-b \right)}{\tan \left( a-b \right)}-(1) \\\ \end{aligned}$$ Now according to this formula, if we are taking the value of $$\tan x\tan 2x$$in equation (1) then, taking $$\tan 2x\tan x$$, where a = 2x, b = x. $$\tan 2x\tan x=\dfrac{\tan 2x-\tan x-\tan \left( 2x-x \right)}{\tan \left( 2x-x \right)}$$ $$\begin{aligned} & =\dfrac{\tan 2x-\tan x-\tan x}{\tan x} \\\ & =\dfrac{\tan 2x-2\tan x}{\tan x} \\\ \end{aligned}$$ Similarly, $$\tan 3x\tan x=\dfrac{\tan 3x-\tan 2x-\tan \left( 3x-2x \right)}{\tan \left( 3x-2x \right)}$$ $$=\dfrac{\tan 3x-\tan 2x-\tan x}{\tan x}$$ Similarly for, $$\tan \left( n+1 \right)x\tan x=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan \left( n+1-n \right)x}{\tan \left( n+1-n \right)x}$$. $$=\dfrac{\tan \left( n+1 \right)x-\tan nx-\tan x}{\tan x}$$. So, if we are adding all this expression together, $$\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x$$ $$=\dfrac{\tan 2x-\tan x-\tan x+\tan 3x-\tan 2x-\tan x+\tan 4x-\tan 3x-\tan x+.......+\tan \left( n+1 \right)x-\tan x-\tan x}{\tan x}$$ By cancelling out the like terms, $$\tan 2x,\tan 3x$$etc $$\begin{aligned} & =\dfrac{-\tan x-\tan x-\tan x-......+\tan \left( n+1 \right)x}{\tan x} \\\ & =\dfrac{-\left( n+1 \right)\tan x+\tan \left( n+1 \right)x}{\tan x} \\\ & =\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x} \\\ \end{aligned}$$ So we got, $$\tan x\tan 2x+\tan 2x\tan 3x+.......+\tan nx\tan \left( n+1 \right)x$$. $$=\dfrac{\tan \left( n+1 \right)x-\left( n+1 \right)\tan x}{\tan x}$$ Note: In a question like this remember to use the trigonometric formula $$\tan \left( a-b \right)$$without which this expression can’t be solved. Learn the formulae of basic trigonometric identities so that you might get an idea of which formula to use for questions like these.