Solveeit Logo

Question

Question: Find the sum of the following series up to n terms. 5 + 55 + 555 + …. .6 + .66 + .666 + …....

Find the sum of the following series up to n terms.
5 + 55 + 555 + ….
.6 + .66 + .666 + ….

Explanation

Solution

First of all, multiply and divide 9 in both the series after taking common 5 and 0.6 from them respectively. Then make a G.P of the form 10,102,103....10,{{10}^{2}},{{10}^{3}}.... by writing 9 = 10 – 1, 99 = 100 – 1, and so on. Finally, use the formula for the sum of n terms of G.P that is a(1rn)(1r)\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}.

Complete step-by-step solution:
In this question, we have to find the sum of the n terms of the series.
(i) 5 + 55 + 555 + ….
(ii) .6 + .66 + .666 + ….
Let us consider the first series
S = 5 + 55 + 555 + ….. n terms
By taking out 5 common from the above series, we get,
S = 5 (1 + 11 + 111 + 1111 …. n terms)
By multiplying 9 on both the sides of the above equation, we get,
9S = 5 [9 + 99 + 999 …… n times]
9S5=9+99+999..... n times\dfrac{9S}{5}=9+99+999.....\text{ n times}
We can also write the above equation as,
9S5=(101)+(1001)+(10001).... n times\dfrac{9S}{5}=\left( 10-1 \right)+\left( 100-1 \right)+\left( 1000-1 \right)....\text{ n times}
By simplifying the above equation and taking the term 1 separately, we get,
9S5=(101+102+103..... n times)(1+1+1...... n times)\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}.....\text{ n times} \right)-\left( 1+1+1......\text{ n times} \right)
We know that 1 added n times is equal to n and the nth term of 1, 2, 3…. n. So, we get,
9S5=(101+102+103....10n)(n)\dfrac{9S}{5}=\left( {{10}^{1}}+{{10}^{2}}+{{10}^{3}}{{....10}^{n}} \right)-\left( n \right)
We know that the series of the form a,ar,ar2,ar3.....arna,ar,a{{r}^{2}},a{{r}^{3}}.....a{{r}^{n}} is in G.P and sum of the n terms of this G.P is given by a(1rn)(1r)\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}
In the above equation, we can see that 10,102,103....10,{{10}^{2}},{{10}^{3}}.... are in G.P with the first term and common ratio as 10. So, we get,
9S5=10(1(10)n)110n\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{1-10}-n
9S5=10(1(10)n)9n\dfrac{9S}{5}=\dfrac{10\left( 1-{{\left( 10 \right)}^{n}} \right)}{-9}-n
9S5=109(10n1)n\dfrac{9S}{5}=\dfrac{10}{9}\left( {{10}^{n}}-1 \right)-n
9S5=10(10n1)9n9\dfrac{9S}{5}=\dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9}
By multiplying 59\dfrac{5}{9} on both the sides of the above equation, we get,
S=59[10(10n1)9n9]S=\dfrac{5}{9}\left[ \dfrac{10\left( {{10}^{n}}-1 \right)-9n}{9} \right]
S=50(10n1)8159nS=\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5}{9}n
Hence, the sum of the sequence 5 + 55 + 555….. up to n terms is equal to 50(10n1)815n9\dfrac{50\left( {{10}^{n}}-1 \right)}{81}-\dfrac{5n}{9}
Let us consider the second set.
S = 0.6 + 0.66 + 0.666 + ….. n times.
By taking out 0.6 common, we can write the sequence as,
S = 6 [0.1 + 0.11 + 0.111 ….. n terms]
By multiplying and dividing RHS by 9, we get,
S=69[0.9+0.99+0.999.....n terms]S=\dfrac{6}{9}\left[ 0.9+0.99+0.999.....n\text{ terms} \right]
S=23[910+99100+9991000+999910000.....n terms]S=\dfrac{2}{3}\left[ \dfrac{9}{10}+\dfrac{99}{100}+\dfrac{999}{1000}+\dfrac{9999}{10000}.....n\text{ terms} \right]
We can write the above equation as,
S=23[(101)10+(1001)100+(10001)1000+(100001)10000.....n terms]S=\dfrac{2}{3}\left[ \dfrac{\left( 10-1 \right)}{10}+\dfrac{\left( 100-1 \right)}{100}+\dfrac{\left( 1000-1 \right)}{1000}+\dfrac{\left( 10000-1 \right)}{10000}.....n\text{ terms} \right]
S=23[(1110)+(11100)+(111000)+(1110000).....n terms]S=\dfrac{2}{3}\left[ \left( 1-\dfrac{1}{10} \right)+\left( 1-\dfrac{1}{100} \right)+\left( 1-\dfrac{1}{1000} \right)+\left( 1-\dfrac{1}{10000} \right).....n\text{ terms} \right]
S=23[(1+1+1......n terms)(110+1100+11000.+...n terms)]S=\dfrac{2}{3}\left[ \left( 1+1+1......n\text{ terms} \right)-\left( \dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{1000}.+...n\text{ terms} \right) \right]
Here, we can see that 110+1(10)2+1(10)3+.....n terms\dfrac{1}{10}+\dfrac{1}{{{\left( 10 \right)}^{2}}}+\dfrac{1}{{{\left( 10 \right)}^{3}}}+.....n\text{ terms} is in GP with a=110a=\dfrac{1}{10} and r=110r=\dfrac{1}{10}.
We know that the sum of n terms of the G.P is a(1rn)(1r)\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}. So, we get,
S=23[(n)110(1(110)n)1110]S=\dfrac{2}{3}\left[ \left( n \right)-\dfrac{\dfrac{1}{10}\left( 1-{{\left( \dfrac{1}{10} \right)}^{n}} \right)}{1-\dfrac{1}{10}} \right]
S=23[n110(1110n)910]S=\dfrac{2}{3}\left[ n-\dfrac{\dfrac{1}{10}\left( 1-\dfrac{1}{{{10}^{n}}} \right)}{\dfrac{9}{10}} \right]
S=23[n19(1110n)]S=\dfrac{2}{3}\left[ n-\dfrac{1}{9}\left( 1-\dfrac{1}{{{10}^{n}}} \right) \right]
We know that 1an=an\dfrac{1}{{{a}^{n}}}={{a}^{-n}}. By using this, we get,
S=23(n19(110n))S=\dfrac{2}{3}\left( n-\dfrac{1}{9}\left( 1-{{10}^{-n}} \right) \right)
So, S=23n227[1(10)n]S=\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right]
Hence, we get the sum of the sequence 0.6 + 0.66 + 0.666 + ….. n terms as 23n227[1(10)n]\dfrac{2}{3}n-\dfrac{2}{27}\left[ 1-{{\left( 10 \right)}^{-n}} \right].

Note: In this question, students must note that whenever we are in need to find the sum of series of the type a + aa + aaa + aaaa ….., we always have to make the series of 9 + 99 + 999 + ….. type by multiplying and dividing the whole series by 9 so that we can get a G.P of the type 10,102,10310,{{10}^{2}},{{10}^{3}}…. Also in this question, some students make this mistake of considering 5 + 55 + 555 + …. Or 0.6 + 0.66 + 0.666 + …. In G.P which is wrong because we can see that there is no common ratio in these sequences.