Question
Mathematics Question on Sequences and Series
Find the sum of the following series up to n terms: (i) 5+55+555+…(ii) .6+.66 +. 666+…
Answer
(i) 5 + 55 + 555 + …
Let Sn = 5 + 55 + 555 + ….. to n terms
=95[9+99+999+.....tonterms]
=95[(10−1)+(102−1)+(103−1)+....tonterms]
=95[(10+102+103+......tonterms)−(1+1+....nterms)]
=95[10−110(10n−1)−n]
=95[910(10n−1)−n]
=8150(10n−1)−95n
(ii) .6 +.66 +. 666 +…
Let Sn = 06. + 0.66 + 0.666 + … to n terms
= 6 [0.1 + 0.11 + 0.111 + .... to n terms]
=96[0.9 + 0.99 + 0.999 + ... to n terms]
= 96[(1−101)+(1−1021)+(1−1031)+ ... to n terms]
=32[(1+1+ .... n terms)$$ - \frac{1 }{ 10 }1+(\frac{1 }{10} + \frac{1 }{10^2} + .... n terms)]
=32[n−101(1−1011−(101)2)]
=32n−302×910(1−10−n)
=32n−272(1−10−n)