Solveeit Logo

Question

Mathematics Question on Sequences and Series

Find the sum of the following series up to n terms: (i) 5+55+555+…(ii) .6+.66 +. 666+…

Answer

(i) 5 + 55 + 555 + …
Let Sn = 5 + 55 + 555 + ….. to n terms
=59[9+99+999+.....tonterms]= \frac{5 }{ 9} [9 + 99 + 999 + ..... to\,\, n\,\, terms]
=59[(101)+(1021)+(1031)+....tonterms]= \frac{5 }{ 9} [(10 - 1) + (102 - 1) + (103 - 1) + ....to\,\, n\,\, terms]
=59[(10+102+103+......tonterms)(1+1+....nterms)]=\frac{ 5 }{ 9} [(10 + 102 + 103 + ...... to\,\,\, n\,\,\, terms) - (1 + 1+ ....n \,\,terms)]
=59[10(10n1)101n]= \frac{5 }{ 9} [\frac{10 (10n - 1) }{10 - 1} - n]
=59[10(10n1)9n]=\frac{ 5 }{ 9} [\frac{10 (10n - 1) }{ 9 }- n]
=5081(10n1)5n9= \frac{50 }{ 81 }(10n - 1) -\frac{ 5n }{9}
(ii) .6 +.66 +. 666 +…
Let Sn = 06. + 0.66 + 0.666 + … to n terms
= 6 [0.1 + 0.11 + 0.111 + .... to n terms]
=69\frac{ 6 }{9}[0.9 + 0.99 + 0.999 + ... to n terms]
= 69[(1110)+(11102)+(11103)+\frac{6 }{ 9} [(1 - \frac{1 }{ 10}) + (1 - \frac{1 }{ 10^2}) + (1 - \frac{1 }{ 10^3}) + ... to n terms]
=23[(1+1+= \frac{2 }{ 3} [(1 + 1 + .... n terms)$$ - \frac{1 }{ 10 }1+(\frac{1 }{10} + \frac{1 }{10^2} + .... n terms)]
=23[n110(1(110)21110)]=\frac{ 2 }{ 3} [ n -\frac{ 1 }{ 10} (\frac{1-(\frac{1}{10})^2}{1-\frac{1}{10}})]
=23n230×109(110n)= \frac{2 }{ 3} n -\frac{ 2 }{ 30} × \frac{10 }{ 9} (1 - 10 ^{- n})
=23n227(110n)=\frac{ 2 }{ 3} n - \frac{2 }{ 27} (1- 10 ^{- n})