Solveeit Logo

Question

Question: Find the sum of the following series to \[n\] terms and to infinity: \(\dfrac{1}{{1 \cdot 2}} + \dfr...

Find the sum of the following series to nn terms and to infinity: 112+123+134+......\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......

Explanation

Solution

The given series 112+123+134+......\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ...... follows a pattern, i.e., 1n(n+1)\dfrac{1}{{n\left( {n + 1} \right)}}. Therefore, in this case, the nth{n^{th}} term is tn=1n(n+1){t_n} = \dfrac{1}{{n\left( {n + 1} \right)}}. The sum of nn terms of a series is calculate by the formula, Sn=n=1n(tn){S_n} = \sum\limits_{n = 1}^n {\left( {{t_n}} \right)} , Whereas the sum of infinite (\infty ) terms can be calculated by S=n=1(tn){S_\infty } = \sum\limits_{n = 1}^\infty {\left( {{t_n}} \right)} .

Complete step-by-step answer:
Given series is: 112+123+134+......\dfrac{1}{{1 \cdot 2}} + \dfrac{1}{{2 \cdot 3}} + \dfrac{1}{{3 \cdot 4}} + ......
The given series follows a pattern, i.e., 1n(n+1)\dfrac{1}{{n\left( {n + 1} \right)}}.
Therefore, the general term (nth{n^{th}}term) of the given series is, tn=1n(n+1){t_n} = \dfrac{1}{{n\left( {n + 1} \right)}}
For converting it into partial fraction, we can rewrite it as, tn=n+1nn(n+1){t_n} = \dfrac{{n + 1 - n}}{{n\left( {n + 1} \right)}}
or tn=n+1n(n+1)nn(n+1){t_n} = \dfrac{{n + 1}}{{n\left( {n + 1} \right)}} - \dfrac{n}{{n\left( {n + 1} \right)}}
\Rightarrow tn=1n1(n+1){t_n} = \dfrac{1}{n} - \dfrac{1}{{\left( {n + 1} \right)}} …… (1)
(A) Sum of nn terms of the given series:
The sum of nn terms of a series is given by ,Sn=n=1n(tn){S_n} = \sum\limits_{n = 1}^n {\left( {{t_n}} \right)}
Therefore, sum of nn terms is, Sn=n=1n(1n1n+1){S_n} = \sum\limits_{n = 1}^n {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} [Using (1)]
\Rightarrow Sn=(1112)+(1213)+(1314)+..............1n+(1n1n+1){S_n} = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{n} + \left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)
All the terms were cancel out with each other except 11\dfrac{1}{1} and 1n+1 - \dfrac{1}{{n + 1}},
Sn=111n+1\therefore {S_n} = \dfrac{1}{1} - \dfrac{1}{{n + 1}}
Now, solving the above equation by taking LCM,
\Rightarrow Sn=n+11n+1{S_n} = \dfrac{{n + 1 - 1}}{{n + 1}}
\Rightarrow Sn=nn+1{S_n} = \dfrac{n}{{n + 1}}
Hence, the sum of nn terms of a given series is nn+1\dfrac{n}{{n + 1}}.
(B) Sum of infinity terms of the given series:
The sum of infinite terms of a series is given by,S=n=1(tn){S_\infty } = \sum\limits_{n = 1}^\infty {\left( {{t_n}} \right)}
Therefore, sum of infinite terms is, S=n=1(1n1n+1){S_\infty } = \sum\limits_{n = 1}^\infty {\left( {\dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right)} [Using (1)]
\Rightarrow S=(1112)+(1213)+(1314)+..............1+(11+1){S_\infty } = \left( {\dfrac{1}{1} - \dfrac{1}{2}} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{3}} \right) + \left( {\dfrac{1}{3} - \dfrac{1}{4}} \right) + .............. - \dfrac{1}{\infty } + \left( {\dfrac{1}{\infty } - \dfrac{1}{{\infty + 1}}} \right)
All the terms were cancel out with each other except 11\dfrac{1}{1} and 1+1\dfrac{1}{{\infty + 1}},
S=111+1\therefore {S_\infty } = \dfrac{1}{1} - \dfrac{1}{{\infty + 1}}
Since, 1=0\dfrac{1}{\infty } = 0 1+1=0 \Rightarrow \dfrac{1}{{\infty + 1}} = 0,
\Rightarrow S=10{S_\infty } = 1 - 0
\Rightarrow S=1{S_\infty } = 1

Hence, the sum of infinite terms of given series is 11.

Note: In mathematics, the symbol \sum {} is used for summation. The value below the sigma operator gives us the starting integer, while the top value gives us the upper bound.
For ex- n=14n2=12+22+32+42=1+4+9+16=30\sum\limits_{n = 1}^4 {{n^2} = {1^2} + } {2^2} + {3^2} + {4^2} = 1 + 4 + 9 + 16 = 30.