Solveeit Logo

Question

Question: Find the sum of the first \(n\) terms and up to infinite terms of the following series: \(\dfrac{4...

Find the sum of the first nn terms and up to infinite terms of the following series:
4123+5234+6345+..................\dfrac{4}{1\cdot 2\cdot 3}+\dfrac{5}{2\cdot 3\cdot 4}+\dfrac{6}{3\cdot 4\cdot 5}+..................

Explanation

Solution

Hint: For solving this question first we will analyse the given series and write the expression of rth{{r}^{th}} the term of the given series and then write it in the form of Tr=f(r)f(r+1){{T}_{r}}=f\left( r \right)-f\left( r+1 \right). After that we will apply the summation and find the sum of first nn terms and then we will find the sum of the infinite terms of the given series.

Complete step-by-step answer:
Given:
We have to find the sum of the first nn terms and up to infinite terms of the following series:
4123+5234+6345+..................\dfrac{4}{1\cdot 2\cdot 3}+\dfrac{5}{2\cdot 3\cdot 4}+\dfrac{6}{3\cdot 4\cdot 5}+..................
Now, if we look at the given series and if Tr{{T}_{r}} is the rth{{r}^{th}} term of the given series and try to analyse the first three terms then we can write Tr=r+3r(r+1)(r+2){{T}_{r}}=\dfrac{r+3}{r\left( r+1 \right)\left( r+2 \right)} .
Now, we have to find the value of r=1nTr\sum\limits_{r=1}^{n}{{{T}_{r}}} . But before this, we should modify the expression of the rth{{r}^{th}} term with simple arithmetic operations. Then,
Tr=r+3r(r+1)(r+2)=rr(r+1)(r+2)+3r(r+1)(r+2) Tr=1(r+1)(r+2)+32[2r(r+1)(r+2)]=(r+2)(r+1)(r+1)(r+2)+32[(r+2)rr(r+1)(r+2)] Tr=1(r+1)1(r+2)+32[1r(r+1)1(r+1)(r+2)] Tr=1(r+1)+32r(r+1)[1(r+2)+32(r+1)(r+2)] Tr=2r+32r(r+1)2r+52(r+1)(r+2) \begin{aligned} & {{T}_{r}}=\dfrac{r+3}{r\left( r+1 \right)\left( r+2 \right)}=\dfrac{r}{r\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{r\left( r+1 \right)\left( r+2 \right)} \\\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{2}{r\left( r+1 \right)\left( r+2 \right)} \right]=\dfrac{\left( r+2 \right)-\left( r+1 \right)}{\left( r+1 \right)\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{\left( r+2 \right)-r}{r\left( r+1 \right)\left( r+2 \right)} \right] \\\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)}-\dfrac{1}{\left( r+2 \right)}+\dfrac{3}{2}\left[ \dfrac{1}{r\left( r+1 \right)}-\dfrac{1}{\left( r+1 \right)\left( r+2 \right)} \right] \\\ & \Rightarrow {{T}_{r}}=\dfrac{1}{\left( r+1 \right)}+\dfrac{3}{2r\left( r+1 \right)}-\left[ \dfrac{1}{\left( r+2 \right)}+\dfrac{3}{2\left( r+1 \right)\left( r+2 \right)} \right] \\\ & \Rightarrow {{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\\ \end{aligned}
Now, let f(r)=2r+32r(r+1)f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)} . Then,
f(r)=2r+32r(r+1) f(r+1)=2(r+1)+32(r+1)(r+1+1) f(r+1)=2r+52(r+1)(r+2) \begin{aligned} & f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)} \\\ & \Rightarrow f\left( r+1 \right)=\dfrac{2\left( r+1 \right)+3}{2\left( r+1 \right)\left( r+1+1 \right)} \\\ & \Rightarrow f\left( r+1 \right)=\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\\ \end{aligned}
Now, as we have calculated that Tr=2r+32r(r+1)2r+52(r+1)(r+2){{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} . Then,
Tr=2r+32r(r+1)2r+52(r+1)(r+2) Tr=f(r)f(r+1) \begin{aligned} & {{T}_{r}}=\dfrac{2r+3}{2r\left( r+1 \right)}-\dfrac{2r+5}{2\left( r+1 \right)\left( r+2 \right)} \\\ & \Rightarrow {{T}_{r}}=f\left( r \right)-f\left( r+1 \right) \\\ \end{aligned}
Now, we will calculate the value of r=1nTr\sum\limits_{r=1}^{n}{{{T}_{r}}} . Then,

& \sum\limits_{r=1}^{n}{{{T}_{r}}}=\sum\limits_{r=1}^{r=n}{f\left( r \right)-f\left( r+1 \right)} \\\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\left[ f\left( 1 \right)-f\left( 2 \right) \right]+\left[ f\left( 2 \right)-f\left( 3 \right) \right]+\left[ f\left( 3 \right)-f\left( 4 \right) \right]+.........+\left[ f\left( n-1 \right)-f\left( n \right) \right]+\left[ f\left( n \right)-f\left( n+1 \right) \right] \\\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=f\left( 1 \right)-f\left( n+1 \right) \\\ \end{aligned}$$ Now, as per our assumption $f\left( r \right)=\dfrac{2r+3}{2r\left( r+1 \right)}$ . Then, $$\begin{aligned} & \sum\limits_{r=1}^{n}{{{T}_{r}}}=f\left( 1 \right)-f\left( n+1 \right) \\\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{2+3}{2\times 1\times 2}-\dfrac{2n+2+3}{2\left( n+1 \right)\left( n+2 \right)} \\\ & \Rightarrow \sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \\\ \end{aligned}$$ Now from the above result, we conclude that the sum of the first $n$ terms of the given series will be $$\sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)}$$ . Now, the sum of infinite terms will be $$\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \right]$$ . Then, $$\begin{aligned} & \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)} \right] \\\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \dfrac{5}{4}-\dfrac{2+{}^{5}/{}_{n}}{2\left( n+3+{}^{2}/{}_{{{n}^{2}}} \right)} \right] \\\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\left[ \dfrac{5}{4}-0 \right] \\\ & \Rightarrow \sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4} \\\ \end{aligned}$$ Now, from the above result, we can say that sum of infinite terms of the given series will be $$\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4}$$ . Thus, final answers will be $$\sum\limits_{r=1}^{n}{{{T}_{r}}}=\dfrac{5}{4}-\dfrac{2n+5}{2\left( {{n}^{2}}+3n+2 \right)}$$ and $$\sum\limits_{r=1}^{\infty }{{{T}_{r}}}=\dfrac{5}{4}$$ where ${{T}_{r}}$ is the ${{r}^{th}}$ term of the given series. Note: Here, the student should first try to understand what is asked in the question. After that, we should first try to analyse the given series and somehow write the expression of ${{r}^{th}}$ term. We should write it correctly without any mistake and then write in the form of ${{T}_{r}}=f\left( r \right)-f\left( r+1 \right)$ so, that we will be able to calculate the value of summation easily without any mistake.