Solveeit Logo

Question

Question: Find the sum of the expression \(\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\...

Find the sum of the expression 1sinθsin2θ+1sin2θsin3θ+1sin3θsin4θ+...........n\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........n terms

Explanation

Solution

Hint:Multiply and divide the whole expression by sinθ\sin \theta .And split sinθ\sin \theta as sin(2θθ)\sin \left( 2\theta -\theta \right) for first term, sin(3θ2θ)\sin \left( 3\theta -2\theta \right) for second term, sin(4θ3θ)\sin \left( 4\theta -3\theta \right) for third term and similarly so on. Use the trigonometry identity given as
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B.

Complete step-by-step answer:
Given series in the equation is
1sinθsin2θ+1sin2θsin3θ+1sin3θsin4θ+...........n\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........n
Let sum of the given series be ‘s’, we get
s=1sinθsin2θ+1sin2θsin3θ+1sin3θsin4θ+........... .......(i)s=\dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+...........\text{ }.......\left( i \right)
Multiply and divide by sinθ\sin \theta in the right-hand side of the above equation
So, we get value of s as
s=sinθsinθ[1sinθsin2θ+1sin2θsin3θ+1sin3θsin4θ+...........]s=\dfrac{\sin \theta }{\sin \theta }\left[ \dfrac{1}{\sin \theta \sin 2\theta }+\dfrac{1}{\sin 2\theta \sin 3\theta }+\dfrac{1}{\sin 3\theta \sin 4\theta }+........... \right]
s=1sinθ[sinθsinθsin2θ+sinθsin2θsin3θ+sinθsin3θsin4θ+...........] ......(ii)s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+........... \right]\text{ }......\left( ii \right)
Now, we can write the last term of the given series as
sinθsin(n1)θsinnθ........(iii)\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta }........\left( iii \right)
Because, the difference in denominator terms in the product is θ\theta .So, we can write the general term or last term as expression given in the problem
So, we get equation (ii) as
s=1sinθ[sinθsinθsin2θ+sinθsin2θsin3θ+sinθsin3θsin4θ+.........sinθsin(n1)θsinnθ]......(v)s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \theta }{\sin \theta \sin 2\theta }+\dfrac{\sin \theta }{\sin 2\theta \sin 3\theta }+\dfrac{\sin \theta }{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \theta }{\sin \left( n-1 \right)\theta \sin n\theta } \right]......\left( v \right)
Now, replace sinθ\sin \theta in numerator of all terms in the bracket as
sinθ=sin(2θθ) 1st term sinθ=sin(3θ2θ) 2nd term sinθ=sin(4θ3θ) 3rd term \begin{aligned} & \sin \theta =\sin \left( 2\theta -\theta \right)\text{ }{{\text{1}}^{st}}\text{ term} \\\ & \sin \theta =\sin \left( 3\theta -2\theta \right)\text{ }{{\text{2}}^{nd}}\text{ term} \\\ & \sin \theta =\sin \left( 4\theta -3\theta \right)\text{ }{{\text{3}}^{rd}}\text{ term} \\\ \end{aligned}
Similarly, we can write sinθ\sin \theta for nth term as
sinθ=sin(nθ(n1)θ) nth term\sin \theta =\sin \left( n\theta -\left( n-1 \right)\theta \right)\text{ }{{\text{n}}^{th}}\text{ term}
Hence, we can write equation (iv) with the help of above equations as
s=1sinθ[sin(2θθ)sinθsin2θ+sin(3θ2θ)sin2θsin3θ+sin(4θ3θ)sin3θsin4θ+.........sin((nθ)(n1)θ)sin(n1)θsinnθ]s=\dfrac{1}{\sin \theta }\left[ \dfrac{\sin \left( 2\theta -\theta \right)}{\sin \theta \sin 2\theta }+\dfrac{\sin \left( 3\theta -2\theta \right)}{\sin 2\theta \sin 3\theta }+\dfrac{\sin \left( 4\theta -3\theta \right)}{\sin 3\theta \sin 4\theta }+.........\dfrac{\sin \left( \left( n\theta \right)-\left( n-1 \right)\theta \right)}{\sin \left( n-1 \right)\theta \sin n\theta } \right]
Now use the trigonometric identity given as
sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B
Hence, we can write series S using the above identity as

& \dfrac{\sin 2\theta cos\theta -cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta -cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\\ & \text{ }+\dfrac{\sin 4\theta cos3\theta -cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta -\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\\ \end{aligned} \right]$$ $$s=\dfrac{1}{\sin \theta }\left[ \begin{aligned} & \dfrac{\sin 2\theta cos\theta }{\sin \theta \sin 2\theta }-\dfrac{cos2\theta sin\theta }{\sin \theta \sin 2\theta }+\dfrac{\sin 3\theta cos2\theta }{\sin 2\theta \sin 3\theta }-\dfrac{cos3\theta sin2\theta }{\sin 2\theta \sin 3\theta } \\\ & \text{ }+\dfrac{\sin 4\theta cos3\theta }{\sin 3\theta \sin 4\theta }-\dfrac{cos4\theta sin3\theta }{\sin 3\theta \sin 4\theta }+......\dfrac{\sin \left( n\theta \right)\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta \sin n\theta }-\dfrac{\sin \left( n-1 \right)\theta \cos n\theta }{\sin \left( n-1 \right)\theta \sin n\theta } \\\ \end{aligned} \right]$$ $s=\dfrac{1}{\sin \theta }\left[ \begin{aligned} & \dfrac{cos\theta }{\sin \theta }-\dfrac{cos2\theta }{\sin 2\theta }+\dfrac{cos2\theta }{\sin 2\theta }-\dfrac{cos3\theta }{\sin 3\theta }+\dfrac{cos3\theta }{\sin 3\theta }-\dfrac{cos4\theta }{\sin 4\theta } \\\ & \text{ }+.........\dfrac{\cos \left( n-1 \right)\theta }{\sin \left( n-1 \right)\theta }-\dfrac{\cos n\theta }{\sin n\theta } \\\ \end{aligned} \right]$ We know $\dfrac{\cos x}{\sin x}=\cot x$ So, we get value of ‘s’ as $s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot 2\theta +\cot 2\theta -\cot 3\theta +\cot 3\theta -\cot 4\theta +.........\cot \left( n-1 \right)\theta -\operatorname{cotn}\theta \right]$ The above series can also be written as $$s=\dfrac{1}{\sin \theta }\left[ \begin{aligned} & \cot \theta -\cot 2\theta + \\\ & \cot 2\theta -\cot 3\theta + \\\ & \cot 3\theta -\cot 4\theta + \\\ & .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\\ & .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\\ & .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\\ & .\text{ }\text{. }\text{. }\text{. }\text{. }\text{.} \\\ & \cot \left( n-1 \right)\theta -\cot n\theta \\\ \end{aligned} \right]$$ So, we get value of ‘s’ as $\begin{aligned} & s=\dfrac{1}{\sin \theta }\left[ \cot \theta -\cot n\theta \right] \\\ & s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta }{\sin \theta }-\dfrac{\cos n\theta }{\sin n\theta } \right] \\\ & s=\dfrac{1}{\sin \theta }\left[ \dfrac{\cos \theta \sin n\theta -\cos n\theta \sin \theta }{\sin \theta \sin n\theta } \right] \\\ & s=\dfrac{1}{\sin \theta }\dfrac{\sin \left( n\theta -\theta \right)}{\sin \theta \sin n\theta } \\\ & s=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta } \\\ \end{aligned}$ Hence, sum of given series is $s=\dfrac{\cot \theta -\cot n\theta }{\sin \theta }=\dfrac{\sin \left( n-1 \right)\theta }{{{\sin }^{2}}\theta \sin n\theta }$ Note: If general term of any series is ${{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }}$ Then divide and multiply the whole equation by $\cos \theta =\cos \left( n\theta -\left( n-1 \right)\theta \right)$ And if ${{T}_{n}}$ is of type $${{T}_{n}}=\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \cos n\theta }\text{ (or) }}\sum{\dfrac{1}{\cos \left( n-1 \right)\theta \sin n\theta }\text{ }}$$ Then divide and multiply the whole equation by $$\sin \left( n\theta -\left( n-1 \right)\theta \right)$$ Calculation is the important side of this question as well. And creating a difference type with the help of observation is the key point of the solution.