Solveeit Logo

Question

Question: Find the sum of the below infinite series. \[\dfrac{{\left( {{\text{ }}1{\text{ }} \times {\text{ ...

Find the sum of the below infinite series.
( 1 × 2 ) 1! + ( 2 × 3 )2!+ ( 3 × 4 )3!+.... \dfrac{{\left( {{\text{ }}1{\text{ }} \times {\text{ }}2{\text{ }}} \right)}}{{{\text{ }}1!{\text{ }}}} + {\text{ }}\dfrac{{\left( {{\text{ }}2{\text{ }} \times {\text{ }}3{\text{ }}} \right)}}{{2!}} + {\text{ }}\dfrac{{\left( {{\text{ }}3{\text{ }} \times {\text{ }}4{\text{ }}} \right)}}{{3!}} + ....{\text{ }}\infty
(1)\left( 1 \right) ee
(2)\left( 2 \right) 2e2e
(3)\left( 3 \right) 3e3e
\left( 4 \right)$$$$none{\text{ }}of{\text{ }}these

Explanation

Solution

Hint : We have to find the sum of the given infinite series . We solve this question using the concept of sum to nn terms of special series . We would simplify the given equation to form an AP and on solving and equating the equations we can find the sum of infinite terms of series , using first term (a)\left( a \right) and common difference (d)\left( d \right). We will put the value of aa and dd in the formula of sum of infinite sum of series.

Complete step-by-step answer :
Given series : is ( 1 × 2 ) 1! + ( 2 × 3 )2!+ ( 3 × 4 )3!+.... \dfrac{{\left( {{\text{ }}1{\text{ }} \times {\text{ }}2{\text{ }}} \right)}}{{{\text{ }}1!{\text{ }}}} + {\text{ }}\dfrac{{\left( {{\text{ }}2{\text{ }} \times {\text{ }}3{\text{ }}} \right)}}{{2!}} + {\text{ }}\dfrac{{\left( {{\text{ }}3{\text{ }} \times {\text{ }}4{\text{ }}} \right)}}{{3!}} + ....{\text{ }}\infty
Here the denominator terms are 1!, 2!, 3!,1!,{\text{ }}2!,{\text{ }}3!, \ldots
So ,
The denominator of n(th)term=n!{n^{(th)}}term = n!
Now ,
Consider the terms in the numerator 1 × 2 , 2 × 3 , 3 × 4 ,1{\text{ }} \times {\text{ }}2{\text{ }},{\text{ }}2{\text{ }} \times {\text{ }}3{\text{ }},{\text{ }}3{\text{ }} \times {\text{ }}4{\text{ }}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots
Here ,
The general formula for the numerator becomesn × ( n + 1 )n{\text{ }} \times {\text{ }}\left( {{\text{ }}n{\text{ }} + {\text{ }}1{\text{ }}} \right), where n is a natural number
So , the n(th)term{n^{(th)}}term of the series would be
Tn = n × ( n + 1 ) ( n! ){T_n}{\text{ }} = {\text{ }}\dfrac{{n{\text{ }} \times {\text{ }}\left( {{\text{ }}n{\text{ }} + {\text{ }}1{\text{ }}} \right){\text{ }}}}{{\left( {{\text{ }}n!{\text{ }}} \right)}}Expanding the term of factorial
n ! = n × (n1) × (n2) × . × 3 × 2 × 1n{\text{ }}!{\text{ }} = {\text{ }}n{\text{ }} \times {\text{ }}\left( {n - 1} \right){\text{ }} \times {\text{ }}\left( {n - 2} \right){\text{ }} \times {\text{ }} \ldots \ldots \ldots \ldots \ldots .{\text{ }} \times {\text{ }}3{\text{ }} \times {\text{ }}2{\text{ }} \times {\text{ }}1
We get the n(th)term{n^{(th)}}term of the series as ,
Tn =  ( n + 1 )( n  1)!{T_n}{\text{ }} = {\text{ }}\dfrac{{{\text{ }}\left( {{\text{ }}n{\text{ }} + {\text{ }}1{\text{ }}} \right)}}{{\left( {{\text{ }}n{\text{ }} - {\text{ }}1} \right)!}}
Put various values of nn for different terms
Put n = 1 , 2 , 3 , 4 , n{\text{ }} = {\text{ }}1{\text{ }},{\text{ }}2{\text{ }},{\text{ }}3{\text{ }},{\text{ }}4{\text{ }},{\text{ }} \ldots \ldots \ldots \ldots \ldots \ldots
Putting values in Tn{T_n} and representing it in terms such that it becomes factorial of exponential series
For , n = 1n{\text{ }} = {\text{ }}1
T1 = ( 1 + 1 )0!{T_1}{\text{ }} = {\text{ }}\dfrac{{\left( {{\text{ }}1{\text{ }} + {\text{ }}1{\text{ }}} \right)}}{{0!}}
T1 = 20!{T_1}{\text{ }} = {\text{ }}\dfrac{2}{{0!}}
For , n = 2n{\text{ }} = {\text{ }}2
T2 = 31!{T_2}{\text{ }} = {\text{ }}\dfrac{3}{{1!}}
T2 = 10! + 21!{T_2}{\text{ }} = {\text{ }}\dfrac{1}{{0!}}{\text{ }} + {\text{ }}\dfrac{2}{{1!}}
For , n = 3n{\text{ }} = {\text{ }}3
T3 = 42!{T_3}{\text{ }} = {\text{ }}\dfrac{4}{{2!}}
T3 = 11!+ 22!{T_3}{\text{ }} = {\text{ }}\dfrac{1}{{1!}} + {\text{ }}\dfrac{2}{{2!}}
For , n = 4n{\text{ }} = {\text{ }}4
T4 = 53!{T_4}{\text{ }} = {\text{ }}\dfrac{5}{{3!}}
T4 = 12! + 23!{T_4}{\text{ }} = {\text{ }}\dfrac{1}{{2!}}{\text{ }} + {\text{ }}\dfrac{2}{{3!}}
Sum of the series = T1 + T2+ T3 + .. = {\text{ }}{T_1}{\text{ }} + {\text{ }}{T_2} + {\text{ }}{T_3}{\text{ }} + {\text{ }} \ldots \ldots \ldots ..{\text{ }}\infty
Sum of series = ( 10! + 11! +12!+ ) + ( 20! + 21!+ 22! +) = {\text{ }}\left( {{\text{ }}\dfrac{1}{{0!}}{\text{ }} + {\text{ }}\dfrac{1}{{1!}}{\text{ }} + \dfrac{1}{{2!}} + \ldots {\text{ }}\infty } \right){\text{ }} + {\text{ }}\left( {{\text{ }}\dfrac{2}{{0!}}{\text{ }} + {\text{ }}\dfrac{2}{{1!}} + {\text{ }}\dfrac{2}{{2!}}{\text{ }} + \ldots \infty } \right)
Taking 22 common , we get
Sum of series =( 10! + 11! +12!+ ) +2×( 10! + 11! +12!+ ) = \left( {{\text{ }}\dfrac{1}{{0!}}{\text{ }} + {\text{ }}\dfrac{1}{{1!}}{\text{ }} + \dfrac{1}{{2!}} + \ldots {\text{ }}\infty } \right){\text{ }} + 2 \times \left( {{\text{ }}\dfrac{1}{{0!}}{\text{ }} + {\text{ }}\dfrac{1}{{1!}}{\text{ }} + \dfrac{1}{{2!}} + \ldots {\text{ }}\infty } \right){\text{ }}
As , the factorial expansion of exponential function :
e = ( 1 + 1 + 12! + 13! + 14!+15! +. )e{\text{ }} = {\text{ }}\left( {{\text{ }}1{\text{ }} + {\text{ }}1{\text{ }} + {\text{ }}\dfrac{1}{{2!}}{\text{ }} + {\text{ }}\dfrac{1}{{3!}}{\text{ }} + {\text{ }}\dfrac{1}{{4!}} + \dfrac{1}{{5!}}{\text{ }} + \ldots .{\text{ }}} \right)
Using this , we get
Sum of series = e + 2 e = {\text{ }}e{\text{ }} + {\text{ }}2{\text{ }}e
Sum of series = 3 e = {\text{ }}3{\text{ }}e
Hence , the sum of the given series is 3 e3{\text{ }}e.
Thus , the correct option is (3)\left( 3 \right)
So, the correct answer is “Option 3”.

Note : The expansion of exponential series :
e = 1n! = 11 + 11 + 12 + 16 + ...e{\text{ }} = {\text{ }}\dfrac{1}{{n!}}{\text{ }} = {\text{ }}\dfrac{1}{1}{\text{ }} + {\text{ }}\dfrac{1}{1}{\text{ }} + {\text{ }}\dfrac{1}{2}{\text{ }} + {\text{ }}\dfrac{1}{6}{\text{ }} + {\text{ }}...
e(1)=(1)nn!=1111+1216+...{e^{( - 1)}} = \dfrac{{{{( - 1)}^n}}}{{n!}} = \dfrac{1}{1} - \dfrac{1}{1} + \dfrac{1}{2} - \dfrac{1}{6} + ...
ex=xnn!=11+x1+x22+x36+...{e^x} = \dfrac{{{x^n}}}{{n!}} = \dfrac{1}{1} + \dfrac{x}{1} + \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{6} + ...
We used the concept of n(th)term{n^{(th)}}term of AP , the formula of sum of n terms of an AP, the concept of special series .
The sum of first nn terms of some special series :
1 + 2 + 3 + 4 + . + n = n(n+1)21{\text{ }} + {\text{ }}2{\text{ }} + {\text{ }}3{\text{ }} + {\text{ }}4{\text{ }} + {\text{ }} \ldots \ldots \ldots \ldots \ldots .{\text{ }} + {\text{ }}n{\text{ }} = {\text{ }}\dfrac{{n\left( {n + 1} \right)}}{2}
12+22+33+........+n2=n(n+1)(2n+1)6{1^2} + {2^2} + {3^3} + ........ + {n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}
13+23+33+.............+n3=[n(n+1)]24{1^3} + {2^3} + {3^3} + ............. + {n^3} = \dfrac{{{{[n(n + 1)]}^2}}}{4}