Solveeit Logo

Question

Question: Find the sum of n terms of the series \( \dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3...

Find the sum of n terms of the series
21.2+52.3.2+103.422+174.5.23+......\dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3.4}}{2^2} + \dfrac{{17}}{{4.5}}{.2^3} + ......

Explanation

Solution

In this particular type of question use the concept that first find out the nth{n^{th}} term of the given series by observing the trend it follows then separate its nth{n^{th}} terms in the terms of denominator and then write its, T1,T2,T3..............Tn1,Tn{T_1},{T_2},{T_3}..............{T_{n - 1}},{T_n} terms and add them so that it cancel out most of the terms so use these concepts to reach the solution of the question.

Complete step-by-step answer:
Given series is
21.2+52.3.2+103.422+174.5.23+......\dfrac{2}{{1.2}} + \dfrac{5}{{2.3}}.2 + \dfrac{{10}}{{3.4}}{2^2} + \dfrac{{17}}{{4.5}}{.2^3} + ......
In the above series first find out the nth{n^{th}} term of the above series.
So the numerator of the above series is
2, 5, 10, 17,......
So as we see carefully, it will follow the trend of (n2+1)\left( {{n^2} + 1} \right) , where n = 1, 2, 3, ...
Now the numerator is multiplied by 1,2,22,23,.....1,2,{2^2},{2^3},.....
So this will follow the G.P with common ratio 2.
So the nth{n^{th}} term of this series is rn1{r^{n - 1}}
So the nth{n^{th}} term of 1,2,22,23,.....1,2,{2^2},{2^3},..... is 2n1{2^{n - 1}} , where n = 1, 2, 3, ...
So over all numerator of the given series follow the trend of (n2+1)2n1\left( {{n^2} + 1} \right){2^{n - 1}}
Now the denominator of the given series is (1.2, 2.3, 3.4, 4.5........)
So as we carefully, it will follow the trend of n(n+1)n\left( {n + 1} \right) , where n = 1, 2, 3, ...
So the nth{n^{th}} term of the given series is
Tn=(n2+1)2n1n(n+1)\Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}}
Now add and subtract by 1 in numerator of (n2+1)n(n+1)\dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} term we have,
(n2+1)n(n+1)=(n21+1+1)n(n+1)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1 + 1 + 1} \right)}}{{n\left( {n + 1} \right)}}
(n2+1)n(n+1)=(n21)n(n+1)+(2)n(n+1)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {{n^2} - 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}}
(n2+1)n(n+1)=(n1)(n+1)n(n+1)+(2)n(n+1)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{n\left( {n + 1} \right)}} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}}
(n2+1)n(n+1)=(n1)n+(2)n(n+1)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \dfrac{{\left( {n - 1} \right)}}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}}
(n2+1)n(n+1)=11n+(2)n(n+1)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} , [(2)n(n+1)=2n2n+1]\left[ {\because \dfrac{{\left( 2 \right)}}{{n\left( {n + 1} \right)}} = \dfrac{2}{n} - \dfrac{2}{{n + 1}}} \right]
(n2+1)n(n+1)=11n+2n2n+1\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{1}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}
(n2+1)n(n+1)=12n+1+1n\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = 1 - \dfrac{2}{{n + 1}} + \dfrac{1}{n}
So this is also written as,
(n2+1)n(n+1)=(22n+1)(11n)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {2 - \dfrac{2}{{n + 1}}} \right) - \left( {1 - \dfrac{1}{n}} \right)
(n2+1)n(n+1)=(2nn+1)(n1n)\Rightarrow \dfrac{{\left( {{n^2} + 1} \right)}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right)
So Tn{T_n} become
Tn=(n2+1)2n1n(n+1)=[(2nn+1)(n1n)]2n1\Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left[ {\left( {\dfrac{{2n}}{{n + 1}}} \right) - \left( {\dfrac{{n - 1}}{n}} \right)} \right]{2^{n - 1}}
Tn=(n2+1)2n1n(n+1)=(2n.nn+1)(2n1(n1)n)\Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 1} \right){2^{n - 1}}}}{{n\left( {n + 1} \right)}} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right)
Now write T1,T2,T3..............Tn1,Tn{T_1},{T_2},{T_3}..............{T_{n - 1}},{T_n} we have,
T1=2.120{T_1} = \dfrac{{2.1}}{2} - 0
T2=(22.23)(2.12){T_2} = \left( {\dfrac{{{2^2}.2}}{3}} \right) - \left( {\dfrac{{2.1}}{2}} \right)
T3=(23.34)(22.23){T_3} = \left( {\dfrac{{{2^3}.3}}{4}} \right) - \left( {\dfrac{{{2^2}.2}}{3}} \right)
T3=(24.45)(23.34){T_3} = \left( {\dfrac{{{2^4}.4}}{5}} \right) - \left( {\dfrac{{{2^3}.3}}{4}} \right)
.
.
.
.
Tn1=(2n1.(n1)n)(2n2(n2)n1){T_{n - 1}} = \left( {\dfrac{{{2^{n - 1}}.\left( {n - 1} \right)}}{n}} \right) - \left( {\dfrac{{{2^{n - 2}}\left( {n - 2} \right)}}{{n - 1}}} \right)
Tn=(2n.nn+1)(2n1(n1)n){T_n} = \left( {\dfrac{{{2^n}.n}}{{n + 1}}} \right) - \left( {\dfrac{{{2^{n - 1}}\left( {n - 1} \right)}}{n}} \right)
Now add these all terms we have,
T1+T2+T3+...+Tn1+Tn=Sn=2n.nn+10\Rightarrow {T_1} + {T_2} + {T_3} + ... + {T_{n - 1}} + {T_n} = {S_n} = \dfrac{{{2^n}.n}}{{n + 1}} - 0
Remaining all the terms are cancel out so we have,
Sn=2n.nn+1\Rightarrow {S_n} = \dfrac{{{2^n}.n}}{{n + 1}}
So this is the required sum.

Note: Whenever we face such types of questions the key concept we have to remember is that first convert the given series into simplified form by converting its nth{n^{th}} term into the difference of two term such that when we add all the terms by substituting n =1 ,2, 3, 4....... (n – 1), the most of the terms are canceled out and the remaining terms are the sum of the required series.