Solveeit Logo

Question

Question: Find the sum of n terms of the sequence \[(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + ...

Find the sum of n terms of the sequence
(x+y),(x2+xy+y2),(x3+x2y+xy2+y3),....(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + {y^3}),.... to n terms.

Explanation

Solution

Here we will multiply and divide each of the terms by (xy)\left( {x - y} \right) and then use the formula for sum of terms in GP to get the desired answer.
The sum of n terms of a GP is given by:-
S=a(rn1)r1S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} where a is the first term and r is the common ratio.

Complete step-by-step answer:
The given terms are:-
(x+y),(x2+xy+y2),(x3+x2y+xy2+y3),....(x + y),({x^2} + xy + {y^2}),({x^3} + {x^2}y + x{y^2} + {y^3}),....
Now adding these terms we get:-
\Rightarrow$$$(x + y) + ({x^2} + xy + {y^2}) + ({x^3} + {x^2}y + x{y^2} + {y^3}) + ....$$ Now multiplying and dividing each term by $$\left( {x - y} \right)$$ we get:- \Rightarrow\dfrac{1}{{x - y}}\left[ {(x + y)\left( {x - y} \right) + \left( {x - y} \right)({x^2} + xy + {y^2}) + \left( {x - y}\right)({x^3} + {x^2}y + x{y^2} + {y^3}) + ....} \right]$$ Now we know that, $\Rightarrow{x^2} - {y^2} = (x + y)\left( {x - y} \right) Also, $\Rightarrow$$${x^3} - {y^3} = \left( {x - y} \right)({x^2} + xy + {y^2})
Hence, substituting the values we get:-
\Rightarrow$$$S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} - {y^2} + {x^3} - {y^3} + {x^4} - {y^4} + ....} \right]$$ Splitting the terms we get:- \RightarrowS = \dfrac{1}{{\left( {x - y} \right)}}\left[ {{x^2} + {x^3} + {x^4} + ....{\text{n terms}}} \right] - \dfrac{1}{{\left( {x - y} \right)}}\left[ {{y^2} + {y^3} + {y^4} + ....{\text{n terms}}} \right]$$ Now we can see that both x and y are forming a GP Hence we will apply the formula of n terms of a GP which is given by:- $$S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$$ where a is the first term and r is the common ratio. Hence, applying the formula we get:- $\RightarrowS = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}}} \right] -\dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right] Simplifying it we get:- $\Rightarrow$$$S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} -\dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]
Hence the sum of the given sequence is:-

S=1(xy)[x2(xn1)x1y2(yn1)y1]S = \dfrac{1}{{\left( {x - y} \right)}}\left[ {\dfrac{{{x^2}\left( {{x^n} - 1} \right)}}{{x - 1}} - \dfrac{{{y^2}\left( {{y^n} - 1} \right)}}{{y - 1}}} \right]

Note: Students should note that in geometric progression two consecutive have the same common ratio as that other two consecutive terms of a series.
Also, students should note that the sum of n terms of a series in GP is given by:-
S=a(rn1)r1S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}} when r>1r > 1
Where a is the first term and r is the common ratio.
And,
S=a(1rn)1rS = \dfrac{{a\left( {1 - {r^n}} \right)}}{{1 - r}} when r<1r < 1
Where a is the first term and r is the common ratio.