Solveeit Logo

Question

Question: Find the sum of last \(10\) terms of an A.P. \(8,10,12,.....................,126\)....

Find the sum of last 1010 terms of an A.P. 8,10,12,.....................,1268,10,12,.....................,126.

Explanation

Solution

Here we have a series of terms in A.P. To find the sum of last 1010 terms, we need to reverse the given A.P., because the sum of last ten terms of the AP: 8,10,12,.....................,1268,10,12,.....................,126 is the same as the sum of the first ten terms of the AP: 126,124,122,...................,12,10,8126,124,122,...................,12,10,8.

Complete step-by-step answer:
Given AP is: 8,10,12,.....................,1268,10,12,.....................,126
Reversing all terms of given AP, we get another AP, i.e., 126,124,122,...................,12,10,8126,124,122,...................,12,10,8.
Here, first term (a)=126\left( a \right) = 126
& Common difference (d)=124126=2\left( d \right) = 124 - 126 = - 2
The sum of nn terms of an AP is given by,
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
To find the sum of 1010 terms of AP, put the values of aa and dd and n=10n = 10, we get-
S10=102[2×126+(101)(2)]{S_{10}} = \dfrac{{10}}{2}\left[ {2 \times 126 + \left( {10 - 1} \right)\left( { - 2} \right)} \right]
S10=5[25218]\Rightarrow {S_{10}} = 5\left[ {252 - 18} \right]
S10=5×234\Rightarrow {S_{10}} = 5 \times 234
S10=1170\Rightarrow {S_{10}} = 1170

Hence the sum of last 1010 terms of the A.P. 8,10,12,.....................,1268,10,12,.....................,126 is 11701170.

Note: An another approach to solve this question is described below:
Given AP is: 8,10,12,.....................,1268,10,12,.....................,126
Here, first term (a)=8\left( a \right) = 8
Last term (an)=126\left( {{a_n}} \right) = 126
& Common difference (d)=108=2\left( d \right) = 10 - 8 = 2
The nnth term of an AP is given by,
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
For finding number of terms (n)\left( n \right), put the values of aa and dd andan=126{a_n} = 126, we get-
126=8+(n1)(2)126 = 8 + \left( {n - 1} \right)\left( 2 \right)
126=8+2n2126 = 8 + 2n - 2
126=6+2n126 = 6 + 2n
1266=2n126 - 6 = 2n
n=1202n = \dfrac{{120}}{2}
n=60n = 60
Hence, the given AP has total 6060 terms.
Now, Sum of last 1010 terms of the given AP= Sum of first 6060 terms - Sum of first 5050 terms
The sum of nn terms of an AP is given by,
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
\therefore Sum of last 1010 terms of the given AP =S60S50 = {S_{60}} - {S_{50}}
=602[2×8+(601)(2)]502[2×8+(501)(2)]= \dfrac{{60}}{2}\left[ {2 \times 8 + \left( {60 - 1} \right)\left( 2 \right)} \right] - \dfrac{{50}}{2}\left[ {2 \times 8 + \left( {50 - 1} \right)\left( 2 \right)} \right]
=30[16+118]25[16+98]= 30\left[ {16 + 118} \right] - 25\left[ {16 + 98} \right]
=30×13425×114= 30 \times 134 - 25 \times 114
=40202850= 4020 - 2850
=1170= 1170
Hence the sum of last 1010 terms of the A.P. 8,10,12,.....................,1268,10,12,.....................,126 is 11701170.