Solveeit Logo

Question

Question: Find the sum of \[\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3...

Find the sum of 131+13+231+2+13+23+331+2+3+......................................16 terms\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + ......................................16{\text{ terms}}
This question has multiple correct options
A. 123123
B. 17854\dfrac{{1785}}{4}
C. 18754\dfrac{{1875}}{4}
D. 234234

Explanation

Solution

Hint : In this question, first of all find the nth{n^{th}} term of the given sequence. Then find the summations of the nn terms of the sequence. Then put n=16n = 16 to get the sum of the first 16 terms which is our required answer.

Complete step by step solution :
Given sequence is 131+13+231+2+13+23+331+2+3+......................................16 terms\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + ......................................16{\text{ terms}}
Consider the nth{n^{th}} term of the sequence.
Tn=13+23+33+..................................+n31+3+5+............................+(2n1){T_n} = \dfrac{{{1^3} + {2^3} + {3^3} + .................................. + {n^3}}}{{1 + 3 + 5 + ............................ + \left( {2n - 1} \right)}}
We know that, 13+23+33+..................................+n3=[n(n+1)2]2{1^3} + {2^3} + {3^3} + .................................. + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} and 1+3+5+............................+(2n1)=n21 + 3 + 5 + ............................ + \left( {2n - 1} \right) = {n^2}. By, using these formulae we get

Tn=[n(n+1)2]2n2 Tn=n2(n+1)24n2 Tn=14(n+1)2  \Rightarrow {T_n} = \dfrac{{{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{{n^2}}} \\\ \Rightarrow {T_n} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4{n^2}}} \\\ \therefore {T_n} = \dfrac{1}{4}{\left( {n + 1} \right)^2} \\\

Here, the sum of the sequence is equal to the summation of Tn{T_n} (nn terms) i.e., 131+13+231+2+13+23+331+2+3+......................................n terms=Tn\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + ......................................n{\text{ terms}} = \sum {{T_n}}

Tn=(n+1)24 Tn=14(n+1)2  \Rightarrow \sum {{T_n}} = \sum {\dfrac{{{{\left( {n + 1} \right)}^2}}}{4}} \\\ \Rightarrow \sum {{T_n}} = \dfrac{1}{4}\sum {{{\left( {n + 1} \right)}^2}} \\\

We know that, (n+1)2=(n+1)(n+2)(2n+3)6\sum {{{\left( {n + 1} \right)}^2}} = \dfrac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {2n + 3} \right)}}{6}. By using this formula, we get

Tn=14(n+1)2=14×(n+1)(n+2)(2n+3)6 Tn=14(n+1)2=(n+1)(n+2)(2n+3)24  \Rightarrow \sum {{T_n}} = \dfrac{1}{4}\sum {{{\left( {n + 1} \right)}^2}} = \dfrac{1}{4} \times \dfrac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {2n + 3} \right)}}{6} \\\ \therefore \sum {{T_n}} = \dfrac{1}{4}\sum {{{\left( {n + 1} \right)}^2}} = \dfrac{{\left( {n + 1} \right)\left( {n + 2} \right)\left( {2n + 3} \right)}}{{24}} \\\

Since, there are 16 terms in the given sequence put n=16n = 16.

T16=(16+1)(16+2)(2×16+3)24 T16=17×18×3524 T16=1071024=17854  \Rightarrow \sum {{T_{16}} = \dfrac{{\left( {16 + 1} \right)\left( {16 + 2} \right)\left( {2 \times 16 + 3} \right)}}{{24}}} \\\ \Rightarrow \sum {{T_{16}} = \dfrac{{17 \times 18 \times 35}}{{24}}} \\\ \therefore \sum {{T_{16}} = \dfrac{{10710}}{{24}} = \dfrac{{1785}}{4}} \\\

Therefore, 131+13+231+2+13+23+331+2+3+......................................16 terms=17854\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + ......................................16{\text{ terms}} = \dfrac{{1785}}{4}.
Thus, the correct option is B. 17854\dfrac{{1785}}{4}

Note : Here, we have used the formula of sum of cubes of first nn natural numbers i.e., 13+23+33+..................................+n3=[n(n+1)2]2{1^3} + {2^3} + {3^3} + .................................. + {n^3} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} and the sum of first nn odd numbers i.e., 1+3+5+............................+(2n1)=n21 + 3 + 5 + ............................ + \left( {2n - 1} \right) = {n^2}.