Question
Question: Find the sum of \[\dfrac{{{1^3}}}{1} + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3...
Find the sum of 113+1+213+23+1+2+313+23+33+......................................16 terms
This question has multiple correct options
A. 123
B. 41785
C. 41875
D. 234
Solution
Hint : In this question, first of all find the nth term of the given sequence. Then find the summations of the n terms of the sequence. Then put n=16 to get the sum of the first 16 terms which is our required answer.
Complete step by step solution :
Given sequence is 113+1+213+23+1+2+313+23+33+......................................16 terms
Consider the nth term of the sequence.
Tn=1+3+5+............................+(2n−1)13+23+33+..................................+n3
We know that, 13+23+33+..................................+n3=[2n(n+1)]2 and 1+3+5+............................+(2n−1)=n2. By, using these formulae we get
Here, the sum of the sequence is equal to the summation of Tn (n terms) i.e., 113+1+213+23+1+2+313+23+33+......................................n terms=∑Tn
⇒∑Tn=∑4(n+1)2 ⇒∑Tn=41∑(n+1)2We know that, ∑(n+1)2=6(n+1)(n+2)(2n+3). By using this formula, we get
⇒∑Tn=41∑(n+1)2=41×6(n+1)(n+2)(2n+3) ∴∑Tn=41∑(n+1)2=24(n+1)(n+2)(2n+3)Since, there are 16 terms in the given sequence put n=16.
⇒∑T16=24(16+1)(16+2)(2×16+3) ⇒∑T16=2417×18×35 ∴∑T16=2410710=41785Therefore, 113+1+213+23+1+2+313+23+33+......................................16 terms=41785.
Thus, the correct option is B. 41785
Note : Here, we have used the formula of sum of cubes of first n natural numbers i.e., 13+23+33+..................................+n3=[2n(n+1)]2 and the sum of first n odd numbers i.e., 1+3+5+............................+(2n−1)=n2.