Solveeit Logo

Question

Question: Find the sum of all the products of the first n natural numbers taken two at a time....

Find the sum of all the products of the first n natural numbers taken two at a time.

Explanation

Solution

Like (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab . Similarly, (x1+x2+..........+xn)2=x12+x22+.......+xn2+2x1x2+............+2xn1xn{\left( {{x_1} + {x_2} + .......... + {x_n}} \right)^2} = {x_1}^2 + {x_2}^2 + ....... + {x_n}^2 + 2{x_1}{x_2} + ............ + 2{x_{n - 1}}{x_n} and this equation will be used to solve the question . On further solving the values of terms n\sum n and n2\sum {{n^2}} will be used so you have to remember the values to these terms. After this it will be easy to solve it further or to get the desired result.

Complete step by step answer:
In general, (x1+x2+..........+xn)2=x12+x22+.......+xn2+2x1x2+............+2xn1xn{\left( {{x_1} + {x_2} + .......... + {x_n}} \right)^2} = {x_1}^2 + {x_2}^2 + ....... + {x_n}^2 + 2{x_1}{x_2} + ............ + 2{x_{n - 1}}{x_n}
By putting x1{x_1} == 11 , x2{x_2} == 22 and xn{x_n} == nn in the above equation we get
(1+2+3+............+n)2 = (12+22+32+............+n2)+2(sum of product of numbers taken two at a time){\left( {1 + 2 + 3 + ............ + n} \right)^2}{\text{ = }}\left( {{1^2} + {2^2} + {3^2} + ............ + {n^2}} \right) + 2\left( {{\text{sum of product of numbers taken two at a time}}} \right)
We can also write the above equation as
(n)2 = n2+ 2S{\left( {\sum n } \right)^2}{\text{ }} = {\text{ }}\sum {{n^2} + {\text{ }}2S}
Where SS denotes the sum. As we know that the value of n\sum n is n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2} and the value of n2\sum {{n^2}} is n(n+1)(2n+1)6\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} . Therefore, by substituting these values in the equation we get
[n(n+1)2]2 = n(n+1)(2n+1)6+2S\Rightarrow {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}{\text{ }} = {\text{ }}\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 2S
By taking right hand side term to left hand side we get
[n(n+1)2]2  n(n+1)(2n+1)6 = 2S\Rightarrow {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}{\text{ }} - {\text{ }}\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{\text{ = }}2S
Now take n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2} term common at the left hand side,
n(n+1)2[n(n+1)2  (2n+1)3] = 2S\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }} - {\text{ }}\dfrac{{\left( {2n + 1} \right)}}{3}} \right]{\text{ = }}2S
On solving the term inside the square brackets we get
n(n+1)2[3n2+3n4n26] = 2S\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{3{n^2} + 3n - 4n - 2}}{6}} \right]{\text{ = }}2S
Taking 66 out we get
n(n+1)12[3n2n2] = 2S\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{{12}}\left[ {3{n^2} - n - 2} \right]{\text{ = }}2S
Now shift 22 from the right hand side to the left hand side,
n(n+1)24[3n2n2] = S\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{{24}}\left[ {3{n^2} - n - 2} \right]{\text{ = }}S
We can also write it as
S = n(n+1)24[3n23n+2n2] \Rightarrow S{\text{ = }}\dfrac{{n\left( {n + 1} \right)}}{{24}}\left[ {3{n^2} - 3n + 2n - 2} \right]{\text{ }}
S = n(n+1)24[3n(n1)+2(n1)] \Rightarrow S{\text{ = }}\dfrac{{n\left( {n + 1} \right)}}{{24}}\left[ {3n\left( {n - 1} \right) + 2\left( {n - 1} \right)} \right]{\text{ }}
Writing the equation in its factor’s form
S = n(n+1)24[(3n+2)(n1)] \Rightarrow S{\text{ = }}\dfrac{{n\left( {n + 1} \right)}}{{24}}\left[ {\left( {3n + 2} \right)\left( {n - 1} \right)} \right]{\text{ }}
S = n(n+1)(3n+2)(n1)24\therefore S{\text{ = }}\dfrac{{n\left( {n + 1} \right)\left( {3n + 2} \right)\left( {n - 1} \right)}}{{24}}

Note:
Don’t confuse n\sum n and n2\sum {{n^2}} . The possible mistake that could happen is that you might think that the sum of the product of n natural numbers taken two at a time is the sum of the square of the first n natural numbers. Keep in mind the values of both these terms as they are important. It’s easy to solve the question, you just have to take a look at the starting of the solution and try to understand the concept behind this.