Solveeit Logo

Question

Question: Find the sum of $5 + 8 + 29 + 80 + 173 + 320 + 533 + \dots$ up to 15 terms....

Find the sum of 5+8+29+80+173+320+533+5 + 8 + 29 + 80 + 173 + 320 + 533 + \dots up to 15 terms.

A

24960

B

24690

C

25960

D

25690

Answer

24960

Explanation

Solution

The given series is S=5+8+29+80+173+320+533+S = 5 + 8 + 29 + 80 + 173 + 320 + 533 + \dots. Let the terms of the series be denoted by ana_n.

a1=5a_1 = 5 a2=8a_2 = 8 a3=29a_3 = 29 a4=80a_4 = 80 a5=173a_5 = 173 a6=320a_6 = 320 a7=533a_7 = 533

We find the differences between consecutive terms: First differences: 85=38-5=3, 298=2129-8=21, 8029=5180-29=51, 17380=93173-80=93, 320173=147320-173=147, 533320=213533-320=213. Sequence of first differences: 3,21,51,93,147,213,3, 21, 51, 93, 147, 213, \dots Second differences: 213=1821-3=18, 5121=3051-21=30, 9351=4293-51=42, 14793=54147-93=54, 213147=66213-147=66. Sequence of second differences: 18,30,42,54,66,18, 30, 42, 54, 66, \dots Third differences: 3018=1230-18=12, 4230=1242-30=12, 5442=1254-42=12, 6654=1266-54=12. Sequence of third differences: 12,12,12,12, 12, 12, \dots Since the third differences are constant, the general term ana_n is a cubic polynomial in nn. Let an=An3+Bn2+Cn+Da_n = An^3 + Bn^2 + Cn + D.

Using the formula for the general term when differences are constant: an=a1+(n11)Δa1+(n12)Δ2a1+(n13)Δ3a1a_n = a_1 + \binom{n-1}{1} \Delta a_1 + \binom{n-1}{2} \Delta^2 a_1 + \binom{n-1}{3} \Delta^3 a_1 Here, a1=5a_1 = 5 is the first term of the original series. Δa1=3\Delta a_1 = 3 is the first term of the first differences. Δ2a1=18\Delta^2 a_1 = 18 is the first term of the second differences. Δ3a1=12\Delta^3 a_1 = 12 is the first term of the third differences.

an=5+(n1)(3)+(n1)(n2)2(18)+(n1)(n2)(n3)6(12)a_n = 5 + (n-1)(3) + \frac{(n-1)(n-2)}{2}(18) + \frac{(n-1)(n-2)(n-3)}{6}(12) an=5+3(n1)+9(n1)(n2)+2(n1)(n2)(n3)a_n = 5 + 3(n-1) + 9(n-1)(n-2) + 2(n-1)(n-2)(n-3) an=5+3n3+9(n23n+2)+2(n36n2+11n6)a_n = 5 + 3n - 3 + 9(n^2 - 3n + 2) + 2(n^3 - 6n^2 + 11n - 6) an=2+3n+9n227n+18+2n312n2+22n12a_n = 2 + 3n + 9n^2 - 27n + 18 + 2n^3 - 12n^2 + 22n - 12 an=2n3+(912)n2+(327+22)n+(2+1812)a_n = 2n^3 + (9-12)n^2 + (3-27+22)n + (2+18-12) an=2n33n22n+8a_n = 2n^3 - 3n^2 - 2n + 8.

We need to find the sum of the first 15 terms, S15=n=115anS_{15} = \sum_{n=1}^{15} a_n. S15=n=115(2n33n22n+8)S_{15} = \sum_{n=1}^{15} (2n^3 - 3n^2 - 2n + 8) S15=2n=115n33n=115n22n=115n+n=1158S_{15} = 2 \sum_{n=1}^{15} n^3 - 3 \sum_{n=1}^{15} n^2 - 2 \sum_{n=1}^{15} n + \sum_{n=1}^{15} 8

Using the summation formulas: n=115n=15(15+1)2=15×162=120\sum_{n=1}^{15} n = \frac{15(15+1)}{2} = \frac{15 \times 16}{2} = 120 n=115n2=15(15+1)(2×15+1)6=15×16×316=5×8×31=1240\sum_{n=1}^{15} n^2 = \frac{15(15+1)(2 \times 15+1)}{6} = \frac{15 \times 16 \times 31}{6} = 5 \times 8 \times 31 = 1240 n=115n3=(15(15+1)2)2=1202=14400\sum_{n=1}^{15} n^3 = \left(\frac{15(15+1)}{2}\right)^2 = 120^2 = 14400 n=1158=15×8=120\sum_{n=1}^{15} 8 = 15 \times 8 = 120

Substitute these values into the expression for S15S_{15}: S15=2(14400)3(1240)2(120)+120S_{15} = 2 (14400) - 3 (1240) - 2 (120) + 120 S15=288003720240+120S_{15} = 28800 - 3720 - 240 + 120 S15=288003720120=288003840=24960S_{15} = 28800 - 3720 - 120 = 28800 - 3840 = 24960.

The sum of the first 15 terms is 24960.