Question
Question: Find the square root of the given complex number \(\sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}\)...
Find the square root of the given complex number 4ab−2(a2−b2)i
(a) \pm \left\\{ \dfrac{\left( a-b \right)+i\left( a+2b \right)}{2} \right\\}
(b) \pm \left\\{ \left( i+5b \right)+i\left( a-4b \right) \right\\}
(c) −2(a−b)
(d) \mp \left\\{ \left( i+b \right)+i\left( a-b \right) \right\\}
(e) \pm \left\\{ \left( a+b \right)+i\left( a-b \right) \right\\}
Solution
- Hint:For solving this question, first we will derive the formula 4xy=(x+y)2−(x−y)2 by using the basic formulas like (x−y)2=x2+y2−2xy and (x+y)2=x2+y2+2xy . After that, we will simplify the term 4ab−2(a2−b2)i and try to transform it into the whole square form. Then, we will apply the square root operator and select the correct option.
Complete step-by-step solution -
Given:
We have to solve the following term:
4ab−2(a2−b2)i
Now, before we proceed we should know the following formulas:
(x−y)2=x2+y2−2xy.............(1)(x+y)2=x2+y2+2xy.............(2)(x2−y2)=(x+y)(x−y).........(3)i=−1......................................(4)
Now, subtract equation (1) from equation (2). Then,
(x+y)2−(x−y)2=(x2+y2+2xy)−(x2+y2−2xy)⇒(x+y)2−(x−y)2=2xy+2xy⇒(x+y)2−(x−y)2=4xy⇒4xy=(x+y)2−(x−y)2....................................(5)
Now, let 4ab−2(a2−b2)i=N and we have to find the value of N .
Now, we will use the above four formulas to simplify the term N=4ab−2(a2−b2)i . So, we will use the formula from the equation (3) to write a2−b2=(a+b)(a−b) in the expression of N . Then,
N=4ab−2(a2−b2)i⇒N=4ab−2(a+b)(a−b)i
Now, we will use the formula from the equation (5) to write 4ab=(a+b)2−(a−b)2 in the above equation. Then,
N=4ab−2(a+b)(a−b)i⇒N=(a+b)2−(a−b)2−2(a+b)(a−b)i
Now, from the equation (4), we know that value of iota i=−1 so, i2=−1 and we can use this, to write −(a−b)2=i2(a−b)2 in the above equation N=(a+b)2−(a−b)2−2(a+b)(a−b)i . Then,
N=(a+b)2−(a−b)2−2(a+b)(a−b)i⇒N=(a+b)2+i2(a−b)2−2(a+b)(a−b)i⇒N=(a+b)2+(i(a−b))2−2(a+b)(i(a−b))
Now, we will use the formula from the equation (1) with x=(a+b) and y=i(a−b) to write N=[(a+b)−i(a−b)]2 in the above equation. Then,
N=(a+b)2+(i(a−b))2−2(a+b)(i(a−b))⇒N=[(a+b)−i(a−b)]2
Now, we will apply the square root operator on both terms in the above equation. Then,
\begin{aligned}
& N={{\left[ \left( a+b \right)-i\left( a-b \right) \right]}^{2}} \\\
& \Rightarrow \sqrt{N}=\pm \left\\{ \left( a+b \right)-i\left( a-b \right) \right\\} \\\
\end{aligned}
Now, as per our assumption N=4ab−2(a2−b2)i so, we can write N=4ab−2(a2−b2)i in the above equation. Then,
\begin{aligned}
& \sqrt{N}=\pm \left\\{ \left( a+b \right)-i\left( a-b \right) \right\\} \\\
& \Rightarrow \sqrt{4ab-2\left( {{a}^{2}}-{{b}^{2}} \right)i}=\pm \left\\{ \left( a+b \right)-i\left( a-b \right) \right\\} \\\
\end{aligned}
Now, from the above result, we conclude that the value of 4ab−2(a2−b2)i will be equal to the value of the term \pm \left\\{ \left( a+b \right)-i\left( a-b \right) \right\\} .
Hence, the option (e) will be the correct option.
Note: Here, the student should first understand the given term 4ab−2(a2−b2)i and then, solve accordingly so, that our result will be matched by one of the given options. Moreover, we should remember the formula 4ab=(a+b)2−(a−b)2 and apply it directly and in such questions, we should try to stick to basic concepts and formulas like i2=−1 , a2−b2=(a+b)(a−b) . Then, we should solve it without any calculation mistakes and select the correct option.