Solveeit Logo

Question

Question: Find the square root of the complex number \[-5+12i\]?...

Find the square root of the complex number 5+12i-5+12i?

Explanation

Solution

We start solving the problem by assuming the square root of the given complex number. We then square them on both sides and compare the real and imaginary parts on both sides. We then make the necessary substitutions and calculations related to the real and imaginary parts of the square root to get the required result.

Complete step-by-step solution:
According to the problem, we need to find the square root of the complex number 5+12i-5+12i.
Let us assume the square root of the given complex number 5+12i-5+12i be a+bia+bi.
So, we get a+bi=5+12ia+bi=\sqrt{-5+12i} ---(1).
Let us do square on both sides.
(a+bi)2=5+12i\Rightarrow {{\left( a+bi \right)}^{2}}=-5+12i.
a2+(ib)2+2(a)(ib)=5+12i\Rightarrow {{a}^{2}}+{{\left( ib \right)}^{2}}+2\left( a \right)\left( ib \right)=-5+12i.
a2+i2b2+2iab=5+12i\Rightarrow {{a}^{2}}+{{i}^{2}}{{b}^{2}}+2iab=-5+12i.
We know that i2=1{{i}^{2}}=-1.
a2+(1)b2+2iab=5+12i\Rightarrow {{a}^{2}}+\left( -1 \right){{b}^{2}}+2iab=-5+12i.
a2b2+2iab=5+12i\Rightarrow {{a}^{2}}-{{b}^{2}}+2iab=-5+12i.
(a2b2)+(2ab)i=5+12i\Rightarrow \left( {{a}^{2}}-{{b}^{2}} \right)+\left( 2ab \right)i=-5+12i.
Comparing real and imaginary parts on both sides, we get a2b2=5{{a}^{2}}-{{b}^{2}}=-5 and 2ab=122ab=12.
Now, we have 2ab=12b=6a2ab=12\Leftrightarrow b=\dfrac{6}{a} ---(2). Let us substitute this result in a2b2=5{{a}^{2}}-{{b}^{2}}=-5.
So, we get a2(6a)2=5{{a}^{2}}-{{\left( \dfrac{6}{a} \right)}^{2}}=-5.
a236a2=5\Rightarrow {{a}^{2}}-\dfrac{36}{{{a}^{2}}}=-5.
a436a2=5\Rightarrow \dfrac{{{a}^{4}}-36}{{{a}^{2}}}=-5.
a436=5a2\Rightarrow {{a}^{4}}-36=-5{{a}^{2}}.
a4+5a236=0\Rightarrow {{a}^{4}}+5{{a}^{2}}-36=0.
a4+9a24a236=0\Rightarrow {{a}^{4}}+9{{a}^{2}}-4{{a}^{2}}-36=0.
a2(a2+9)4(a2+9)=0\Rightarrow {{a}^{2}}\left( {{a}^{2}}+9 \right)-4\left( {{a}^{2}}+9 \right)=0.
(a24)(a2+9)=0\Rightarrow \left( {{a}^{2}}-4 \right)\left( {{a}^{2}}+9 \right)=0.
a24=0\Rightarrow {{a}^{2}}-4=0 or a2+9=0{{a}^{2}}+9=0.
a2=4\Rightarrow {{a}^{2}}=4 or a2=9{{a}^{2}}=-9.
a=±2\Rightarrow a=\pm 2 (we know that a2{{a}^{2}} is always greater than zero so, we neglect a2=9{{a}^{2}}=-9).
Now, let us find the value of b by substituting the value of “a” in equation (2).
So, we get b=6±2b=±3b=\dfrac{6}{\pm 2}\Leftrightarrow b=\pm 3.
Let us substitute this in equation (1) to get the square roots of the given complex number.
So, we get ±(2+3i)=5+12i\pm \left( 2+3i \right)=\sqrt{-5+12i}.
So, we have found the square root of the given complex number 5+12i-5+12i as ±(2+3i)\pm \left( 2+3i \right).
\therefore The square root of the complex number 5+12i-5+12i is ±(2+3i)\pm \left( 2+3i \right).

Note: We should note that in a complex number a+iba+ib, ‘a’ and ‘b’ are real numbers and this is the reason why we didn’t consider a2=9{{a}^{2}}=-9. We should not make calculation mistakes while solving this problem. We can also solve the problem by finding the exponential form of the given complex number and then find the square root of that exponential form which will require a good amount of calculation. Similarly, we can expect problems to find the Euler and exponential form of the given complex number.