Solveeit Logo

Question

Question: Find the square root of \(\left( -7+24i \right)\) ....

Find the square root of (7+24i)\left( -7+24i \right) .

Explanation

Solution

Hint: Take -7 + 24i = a + bi, where a = -7 and b = 24. Assume the square root of (7+24i)\left( -7+24i \right) equal to (x+iy)\left( x+iy \right). Take square and solve the equation obtained. Find the equation connecting x, y, a and b. Then find the roots.

Complete step-by-step answer:
Let consider a complex number a + ib.
Let the square root of (a + ib) be x + iy
That is a+ib=x+iy, where x,yR\sqrt{a+ib}=x+iy\text{, where }x,y\in R
Now square on both sides,
(a+ib)2=(x+iy)2 a+ib=x2+2iy+i2y2 \begin{aligned} & {{\left( \sqrt{a+ib} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\\ & \Rightarrow a+ib={{x}^{2}}+2iy+{{i}^{2}}{{y}^{2}} \\\ \end{aligned}
We know i2=1{{i}^{2}}=-1
a+ib=x2+2iy+(1)y2 a+ib=x2y2+2iyx...............(1) \begin{aligned} & \therefore a+ib={{x}^{2}}+2iy+\left( -1 \right){{y}^{2}} \\\ & a+ib={{x}^{2}}-{{y}^{2}}+2iyx...............\left( 1 \right) \\\ \end{aligned}
Let us take x2y2=a..............(2) (a+b)2=(ab)2+4ab{{x}^{2}}-{{y}^{2}}=a..............\left( 2 \right)\text{ }\because {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab
2xy=b.......................(3)2xy=b.......................\left( 3 \right)
(x2+y2)2=(x2=y2)2+4x2y2=a2+b2 (x2+y2)2=a2+b2 \begin{aligned} & {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}={{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{a}^{2}}+{{b}^{2}} \\\ & \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{a}^{2}}+{{b}^{2}} \\\ \end{aligned}
Take square root on both sides.
(x2+y2)2=a2+b2 x2+y2=a2+b2................(4) \begin{aligned} & \sqrt{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\\ & {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}................\left( 4 \right) \\\ \end{aligned}
Add equation (2) and equation (4).

& {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\\ & {{x}^{2}}-{{y}^{2}}=a\text{ } \\\ \end{aligned}}{2{{x}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \begin{matrix} \therefore {{x}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2} \\\ \therefore x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}} \\\ \end{matrix}$$ Now subtract equation (2) and equation (4). $$\begin{aligned} & \dfrac{\begin{aligned} & {{x}^{2}}+{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}} \\\ & {}^{-}{{x}^{2\left( + \right)}}-{{y}^{2}}={}^{-}a \\\ \end{aligned}}{2{{y}^{2}}=\sqrt{{{a}^{2}}+{{b}^{2}}}-a} \\\ & {{y}^{2}}=\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}\ \ \ \ \therefore y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}} \\\ \end{aligned}$$ Now we have got the value of x and y. $x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}\ \ and\ y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}\ .............\left( 5 \right)$ We have been asked to find the square root of (-7 +24i) $\sqrt{\left( -7+24i \right)}=x+iy$ i.e., take square root of (-7 + 24i) equal to x + iy Where a + ib = -7 + 24i $\therefore $ a = -7 b = 24 Now squaring on both sides; $\begin{aligned} & {{\left( \sqrt{-7+24i} \right)}^{2}}={{\left( x+iy \right)}^{2}} \\\ & -7+24i={{x}^{2}}+2xyi+{{\left( iy \right)}^{2}} \\\ & \therefore {{i}^{2}}=-1 \\\ & \Rightarrow -7+24i={{x}^{2}}-{{y}^{2}}+2xyi..............\left( 6 \right) \\\ \end{aligned}$ Now compare equation (1) and equation (6) which is similar. $\begin{aligned} & \therefore {{x}^{2}}-{{y}^{2}}=a\Rightarrow {{x}^{2}}-{{y}^{2}}=-7 \\\ & 2xy=b\Rightarrow 2xy=24 \\\ \end{aligned}$ Now substitute the value of a = -7 and b = 24 in equation (5). $\begin{aligned} & x=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}+a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}+\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25-7}{2}}=\pm \sqrt{\dfrac{18}{2}}=\pm 3 \\\ & y=\pm \sqrt{\dfrac{\sqrt{{{a}^{2}}+{{b}^{2}}}-a}{2}}=\pm \sqrt{\dfrac{\sqrt{{{\left( -7 \right)}^{2}}+{{24}^{2}}}-\left( -7 \right)}{2}}=\pm \sqrt{\dfrac{25+7}{2}}=\pm \sqrt{\dfrac{32}{2}}=\pm 4 \\\ & \therefore x+iy=\pm 3\pm 4 \\\ \end{aligned}$ $\therefore $The roots are $+\left( 3+i4 \right)\ \ and\ \ -\left( 3+i4 \right)$. Note: The proof of $\sqrt{a+ib}=x+iy$ is similar to our question$\left( -7+24i \right)$. Compare the general solution to $\sqrt{-7+24i}=x+iy$.