Solveeit Logo

Question

Question: Find the square root of \(\dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \r...

Find the square root of (314)4(413)4(314)2(413)2\dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} .
(A) 75127\dfrac{5}{{12}}
(B) 77127\dfrac{7}{{12}}
(C) 55125\dfrac{5}{{12}}
(D) 57125\dfrac{7}{{12}}

Explanation

Solution

Transform the given expression into its simpler form using the identity mab=(ma)b{m^{ab}} = {\left( {{m^a}} \right)^b} and a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right). Now cancel out the common terms from numerator and denominator. This will give you a simpler term. Take the square root of this expression. Take out all the perfect squares from the radical sign. Take LCM and find a square root. Change the answer into a mixed fraction to find the correct option.

Complete step-by-step answer:
We need to find square root of (314)4(413)4(314)2(413)2\dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}}.
The given expression can also be written using mab=(ma)b{m^{ab}} = {\left( {{m^a}} \right)^b} as:
(314)4(413)4(314)2(413)2=[(314)2]2[(413)2]2(314)2(413)2\Rightarrow \dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = \dfrac{{{{\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2}} \right]}^2} - {{\left[ {{{\left( {4\dfrac{1}{3}} \right)}^2}} \right]}^2}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}}
As we know the identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right), using that:
(314)4(413)4(314)2(413)2=[(314)2]2[(413)2]2(314)2(413)2=[(314)2(413)2][(314)2+(413)2](314)2(413)2\Rightarrow \dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = \dfrac{{{{\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2}} \right]}^2} - {{\left[ {{{\left( {4\dfrac{1}{3}} \right)}^2}} \right]}^2}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = \dfrac{{\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}} \right]\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2} + {{\left( {4\dfrac{1}{3}} \right)}^2}} \right]}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}}
Now the term [(314)2(413)2]\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}} \right] can be cancelled from numerator and denominator:
(314)4(413)4(314)2(413)2=[(314)2(413)2][(314)2+(413)2](314)2(413)2=(314)2+(413)2\Rightarrow \dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = \dfrac{{\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}} \right]\left[ {{{\left( {3\dfrac{1}{4}} \right)}^2} + {{\left( {4\dfrac{1}{3}} \right)}^2}} \right]}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = {\left( {3\dfrac{1}{4}} \right)^2} + {\left( {4\dfrac{1}{3}} \right)^2}
Therefore, from this transformation we get:
(314)4(413)4(314)2(413)2=(314)2+(413)2\Rightarrow \dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = {\left( {3\dfrac{1}{4}} \right)^2} + {\left( {4\dfrac{1}{3}} \right)^2}
If we evaluate this mixed fraction using pmn=n×p+mnp\dfrac{m}{n} = \dfrac{{n \times p + m}}{n} , we will get:
(314)4(413)4(314)2(413)2=(314)2+(413)2=(134)2+(133)2\Rightarrow \dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} = {\left( {3\dfrac{1}{4}} \right)^2} + {\left( {4\dfrac{1}{3}} \right)^2} = {\left( {\dfrac{{13}}{4}} \right)^2} + {\left( {\dfrac{{13}}{3}} \right)^2}
According to the question, we need to find the square root of this expression:
(134)2+(133)2=132×(116+19)\Rightarrow \sqrt {{{\left( {\dfrac{{13}}{4}} \right)}^2} + {{\left( {\dfrac{{13}}{3}} \right)}^2}} = \sqrt {{{13}^2} \times \left( {\dfrac{1}{{16}} + \dfrac{1}{9}} \right)}
Let’s bring out 132{13^2}from the radical sign:
(134)2+(133)2=132×(116+19)=13116+19\Rightarrow \sqrt {{{\left( {\dfrac{{13}}{4}} \right)}^2} + {{\left( {\dfrac{{13}}{3}} \right)}^2}} = \sqrt {{{13}^2} \times \left( {\dfrac{1}{{16}} + \dfrac{1}{9}} \right)} = 13\sqrt {\dfrac{1}{{16}} + \dfrac{1}{9}}
Now we can take LCM inside the radical sign, this will give us:
(134)2+(133)2=13116+19=139+1616×9=132516×9\Rightarrow \sqrt {{{\left( {\dfrac{{13}}{4}} \right)}^2} + {{\left( {\dfrac{{13}}{3}} \right)}^2}} = 13\sqrt {\dfrac{1}{{16}} + \dfrac{1}{9}} = 13\sqrt {\dfrac{{9 + 16}}{{16 \times 9}}} = 13\sqrt {\dfrac{{25}}{{16 \times 9}}}
So, numbers 25,16 and 925,16{\text{ and 9}} are a perfect square, and can be brought out of radical sign:
(134)2+(133)2=132516×9=13×54×3=6512\Rightarrow \sqrt {{{\left( {\dfrac{{13}}{4}} \right)}^2} + {{\left( {\dfrac{{13}}{3}} \right)}^2}} = 13\sqrt {\dfrac{{25}}{{16 \times 9}}} = 13 \times \dfrac{5}{{4 \times 3}} = \dfrac{{65}}{{12}}
We got the answer but the options given are in mixed fraction. This can be converted into mixed fraction using pmn=n×p+mnp\dfrac{m}{n} = \dfrac{{n \times p + m}}{n}
(134)2+(133)2=6512=12×5+512=5512\Rightarrow \sqrt {{{\left( {\dfrac{{13}}{4}} \right)}^2} + {{\left( {\dfrac{{13}}{3}} \right)}^2}} = \dfrac{{65}}{{12}} = \dfrac{{12 \times 5 + 5}}{{12}} = 5\dfrac{5}{{12}}
Therefore, we get the square root of (314)4(413)4(314)2(413)2\dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \right)}^4}}}{{{{\left( {3\dfrac{1}{4}} \right)}^2} - {{\left( {4\dfrac{1}{3}} \right)}^2}}} as 55125\dfrac{5}{{12}}.

So, the correct answer is “Option C”.

Note: Notice that the use of identities of algebra was a crucial part of the solution. An alternative approach to this problem can be the use of identity a4b4=(a2b2)(a2+b2){a^4} - {b^4} = \left( {{a^2} - {b^2}} \right)\left( {{a^2} + {b^2}} \right). This will change the given expression into a simpler form. After this, you can take the square root and solve mixed fractions