Question
Question: Find the square root of \(\dfrac{{{{\left( {3\dfrac{1}{4}} \right)}^4} - {{\left( {4\dfrac{1}{3}} \r...
Find the square root of (341)2−(431)2(341)4−(431)4 .
(A) 7125
(B) 7127
(C) 5125
(D) 5127
Solution
Transform the given expression into its simpler form using the identity mab=(ma)b and a2−b2=(a−b)(a+b). Now cancel out the common terms from numerator and denominator. This will give you a simpler term. Take the square root of this expression. Take out all the perfect squares from the radical sign. Take LCM and find a square root. Change the answer into a mixed fraction to find the correct option.
Complete step-by-step answer:
We need to find square root of (341)2−(431)2(341)4−(431)4.
The given expression can also be written using mab=(ma)b as:
⇒(341)2−(431)2(341)4−(431)4=(341)2−(431)2[(341)2]2−[(431)2]2
As we know the identity a2−b2=(a−b)(a+b), using that:
⇒(341)2−(431)2(341)4−(431)4=(341)2−(431)2[(341)2]2−[(431)2]2=(341)2−(431)2[(341)2−(431)2][(341)2+(431)2]
Now the term [(341)2−(431)2] can be cancelled from numerator and denominator:
⇒(341)2−(431)2(341)4−(431)4=(341)2−(431)2[(341)2−(431)2][(341)2+(431)2]=(341)2+(431)2
Therefore, from this transformation we get:
⇒(341)2−(431)2(341)4−(431)4=(341)2+(431)2
If we evaluate this mixed fraction using pnm=nn×p+m , we will get:
⇒(341)2−(431)2(341)4−(431)4=(341)2+(431)2=(413)2+(313)2
According to the question, we need to find the square root of this expression:
⇒(413)2+(313)2=132×(161+91)
Let’s bring out 132from the radical sign:
⇒(413)2+(313)2=132×(161+91)=13161+91
Now we can take LCM inside the radical sign, this will give us:
⇒(413)2+(313)2=13161+91=1316×99+16=1316×925
So, numbers 25,16 and 9 are a perfect square, and can be brought out of radical sign:
⇒(413)2+(313)2=1316×925=13×4×35=1265
We got the answer but the options given are in mixed fraction. This can be converted into mixed fraction using pnm=nn×p+m
⇒(413)2+(313)2=1265=1212×5+5=5125
Therefore, we get the square root of (341)2−(431)2(341)4−(431)4 as 5125.
So, the correct answer is “Option C”.
Note: Notice that the use of identities of algebra was a crucial part of the solution. An alternative approach to this problem can be the use of identity a4−b4=(a2−b2)(a2+b2). This will change the given expression into a simpler form. After this, you can take the square root and solve mixed fractions