Solveeit Logo

Question

Question: Find the square root of complex number \(-8-6i\)....

Find the square root of complex number 86i-8-6i.

Explanation

Solution

Hint: For solving this problem, first assume the square root of the desired number in the form of two variables in the rectangular system. Now for obtaining a relationship between these two variables, we use squaring of both sides technique and then equating the real part with real number and imaginary part with imaginary number. By using this methodology, we can easily evaluate the two variables.

Complete step-by-step solution -
According to the problem statement, we are required to find the square root of complex number 86i-8-6i.
Let the square root of the complex number be a+iba+ib such that 86i=a+ib(1)\sqrt{-8-6i}=a+ib\ldots (1)
Now for obtaining the relationship between a and b, we square both the sides of equation (1)
(86i)2=(a+ib)2{{\left( \sqrt{-8-6i} \right)}^{2}}={{\left( a+ib \right)}^{2}}
Now, by using the expression (x+y)2=x2+y2+2xy{{(x+y)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy, the above expression can be simplified as:
86i=a2+(ib)2+2a(ib) 86i=a2b2+2a(ib) \begin{aligned} & -8-6i={{a}^{2}}+{{\left( ib \right)}^{2}}+2\cdot a\cdot \left( ib \right) \\\ & -8-6i={{a}^{2}}-{{b}^{2}}+2\cdot a\cdot \left( ib \right) \\\ \end{aligned}
Now, on equating the terms in such a manner that real part is equated with real number and imaginary part is equated with imaginary number, we get
a2b2=8(2) 2ab=6 ab=62=3(3) \begin{aligned} & {{a}^{2}}-{{b}^{2}}=-8\ldots (2) \\\ & 2ab=-6 \\\ & ab=\dfrac{-6}{2}=-3\ldots (3) \\\ \end{aligned}
By using equation (3) (b=3a)\left( b=\dfrac{-3}{a} \right), equation (2) can be reduced as
a2(3a)2=8 a29a2=8 a49a2=8 a4+8a29=0(4) \begin{aligned} & {{a}^{2}}-{{\left( \dfrac{-3}{a} \right)}^{2}}=-8 \\\ & {{a}^{2}}-\dfrac{9}{{{a}^{2}}}=-8 \\\ & \dfrac{{{a}^{4}}-9}{{{a}^{2}}}=-8 \\\ & {{a}^{4}}+8{{a}^{2}}-9=0\ldots (4) \\\ \end{aligned}
Now, by using splitting the middle term method, we factorise the above equation (4) as
a4a2+9a29=0 a2(a21)+9(a21)=0 (a2+9)(a21)=0 a2=9,a2=1 a=9,a=1 a=±3i,a=±1 \begin{aligned} & {{a}^{4}}-{{a}^{2}}+9{{a}^{2}}-9=0 \\\ & {{a}^{2}}\left( {{a}^{2}}-1 \right)+9\left( {{a}^{2}}-1 \right)=0 \\\ & \left( {{a}^{2}}+9 \right)\left( {{a}^{2}}-1 \right)=0 \\\ & {{a}^{2}}=-9,{{a}^{2}}=1 \\\ & a=\sqrt{-9},a=\sqrt{1} \\\ & a=\pm 3i,a=\pm 1 \\\ \end{aligned}
Therefore, the value of a is a=±3i,a=±1a=\pm 3i,a=\pm 1.
Putting the values of a in equation (3), we get
b=3±3i,b=3±1 b=1i,b=3 b=ii2,b=3 b=±i,b=3 \begin{aligned} & b=\dfrac{-3}{\pm 3i},b=\dfrac{-3}{\pm 1} \\\ & b=\mp \dfrac{1}{i},b=\mp 3 \\\ & b=\mp \dfrac{i}{{{i}^{2}}},b=\mp 3 \\\ & b=\pm i,b=\mp 3 \\\ \end{aligned}
The value of b is b=±i,b=3b=\pm i,b=\mp 3
Z=a+ib Z=±(3i+i×i) Z=±(3i+i2) Z=±(1+3i) Also, Z=±(13i) \begin{aligned} & Z=a+ib \\\ & Z=\pm \left( 3i+i\times i \right) \\\ & Z=\pm \left( 3i+{{i}^{2}} \right) \\\ & Z=\pm \left( -1+3i \right) \\\ & \text{Also, Z=}\pm \left( 1-3i \right) \\\ \end{aligned}
Hence, the square root of complex numbers 86i-8-6i are ±(1+3i) and ±(13i)\pm \left( -1+3i \right)\text{ and }\pm \left( 1-3i \right).

Note: This problem can also be solved alternatively by first converting the complex number into Euler's form and then taking the square root of the number. The Euler form of 86i-8-6i is reiθ=±10ei0.20555πr{{e}^{i\theta }}=\pm 10{{e}^{i0.20555\pi }}. In this way, a solution is obtained with less calculations.