Solveeit Logo

Question

Question: Find the square root of \( - 16 + 30i \) ....

Find the square root of 16+30i- 16 + 30i .

Explanation

Solution

Hint : A complex number is a combination of real part and imaginary part. As per the complex coordinate system, xx denotes the real axis and yy represents the imaginary axis. The imaginary part consists of ii called as imaginary unit number denotes square root of 1- 1 , i.e. i=1i = \sqrt { - 1} . In the complex number of the form a+iba + ib , aa denotes the real part of the complex number and bb denotes the imaginary part of the complex number. The magnitude of a complex number of the form a+iba + ib is given as a2+b2\sqrt {{a^2} + {b^2}} . Understanding of complex numbers is necessary in order to solve this type of question.

Complete step-by-step answer :
Let us assume that the square root of the given complex number is a+iba + ib .
So, this means a+ib=16+30ia + ib = \sqrt { - 16 + 30i}
Now, we should square the equation on both sides.
(a+ib)2=(16+30i)2\Rightarrow {\left( {a + ib} \right)^2} = {\left( {\sqrt { - 16 + 30i} } \right)^2}
We know that i2=1{i^2} = - 1 .
On simplifying the equation using the formula (x+y)2=x2+2xy+y2{\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} , we get,
a2b2+i2ab=16+30i\Rightarrow {a^2} - {b^2} + i2ab = - 16 + 30i
Let us compare both sides of the equation and equate the imaginary parts of both sides as well as the real parts present on both sides of the equation.
a2b2=16{a^2} - {b^2} = - 16 and i2ab=30i2ab = 30
2ab=302ab = 30 implies that ab=15ab = 15
It is known that z2=z2{\left| z \right|^2} = \left| {{z^2}} \right| .
Let us assume that 16+30i=z2- 16 + 30i = {z^2} , this implies that a+ib=za + ib = z .
But we already know that z2=z2{\left| z \right|^2} = \left| {{z^2}} \right|
Let us substitute z2=16+30i{z^2} = - 16 + 30i and z=a+ibz = a + ib in the equation z2=z2{\left| z \right|^2} = \left| {{z^2}} \right| .
After substitution, we get, a+ib2=16+30i{\left| {a + ib} \right|^2} = \left| { - 16 + 30i} \right| .
The magnitude of a+iba + ib is a+ib=a2+b2\left| {a + ib} \right| = \sqrt {{a^2} + {b^2}} .
So,
(a2+b2)2=16+30i\Rightarrow {\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \left| { - 16 + 30i} \right| . Also 16+30i=(16)2+(30)2\left| { - 16 + 30i} \right| = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}}
Now, (a2+b2)2=(16)2+(30)2{\left( {\sqrt {{a^2} + {b^2}} } \right)^2} = \sqrt {{{\left( { - 16} \right)}^2} + {{\left( {30} \right)}^2}}
a2+b2=256+900 a2+b2=1156 a2+b2=34 \Rightarrow {a^2} + {b^2} = \sqrt {256 + 900} \\\ \Rightarrow {a^2} + {b^2} = \sqrt {1156} \\\ \Rightarrow {a^2} + {b^2} = 34
ab=15 a=15b ab = 15\\\ a = \dfrac{{15}}{b}
Now, we can substitute in the equation a2+b2=34{a^2} + {b^2} = 34 .
After substituting, we get, (15b)2+b2=34{\left( {\dfrac{{15}}{b}} \right)^2} + {b^2} = 34
225b2+b2=34 225+b2b2b2=34 225+b4b2=34 \Rightarrow \dfrac{{225}}{{{b^2}}} + {b^2} = 34\\\ \dfrac{{225 + {b^2} \cdot {b^2}}}{{{b^2}}} = 34\\\ \dfrac{{225 + {b^4}}}{{{b^2}}} = 34
After multiplying b2{b^2} on both sides of the equation, we get 225+b4=34b2225 + {b^4} = 34{b^2}
On rearranging the terms, we get, b434b2+225=0{b^4} - 34{b^2} + 225 = 0
It is known that 25+9=3425 + 9 = 34 and 25×9=22525 \times 9 = 225 .
So, b434b2+225=0{b^4} - 34{b^2} + 225 = 0 can be written as b425b29b2+225=0{b^4} - 25{b^2} - 9{b^2} + 225 = 0 .
Now, let us take b2{b^2} and 9 common from the equation b425b29b2+225=0{b^4} - 25{b^2} - 9{b^2} + 225 = 0
b2(b225)9(b225)=0 (b225)(b29)=0{b^2}\left( {{b^2} - 25} \right) - 9\left( {{b^2} - 25} \right) = 0\\\ \left( {{b^2} - 25} \right)\left( {{b^2} - 9} \right) = 0
This implies, b29=0{b^2} - 9 = 0 and b225=0{b^2} - 25 = 0
So, b=±3b = \pm 3 and b=±5b = \pm 5
If b = 3, then a=5a = 5 as ab=15a \cdot b = 15
If b=3b = - 3 , then a=5a = - 5 as ab=15a \cdot b = 15
If b=5b = 5 , then a=3a = 3 as ab=15a \cdot b = 15
If b=5b = - 5 , then a=3a = - 3 as ab=15a \cdot b = 15
But a2b2=16{a^2} - {b^2} = - 16 . So, the values of aa and bb should also satisfy the equation a2b2=16{a^2} - {b^2} = - 16 .
Now, let us substitute a = 3 and b=5b = 5 to check whether a2b2{a^2} - {b^2} is 16- 16 .
a2b2=3252 =925 =16 \Rightarrow {a^2} - {b^2} = {3^2} - {5^2}\\\ = 9 - 25\\\ = - 16
So, a = 3 and b=5b = 5 satisfies the equation a2b2=16{a^2} - {b^2} = - 16 .
Now, let us substitute a = - 3 and b=5b = - 5 to check whether a2b2{a^2} - {b^2} is 16- 16
a2b2=(3)2(5)2 =925 =16 \Rightarrow {a^2} - {b^2} = {\left( { - 3} \right)^2} - {\left( { - 5} \right)^2}\\\ = 9 - 25\\\ = - 16
So, a = - 3 and b=5b = - 5 satisfies the equation a2b2=16{a^2} - {b^2} = - 16 .
Now, let us substitute a = - 5 and b=3b = - 3 to check whether a2b2{a^2} - {b^2} is 16- 16 .
a2b2=(5)2(3)2 =259 =16 \Rightarrow {a^2} - {b^2} = {\left( { - 5} \right)^2} - {\left( { - 3} \right)^2}\\\ = 25 - 9\\\ = 16
So, a = - 5 and b=3b = - 3 doesn’t satisfy the equation a2b2=16{a^2} - {b^2} = - 16 .
Now, let us substitute a=5a = 5 and b=3b = 3 to check whether a2b2{a^2} - {b^2} is 16- 16
a2b2=5232 =259 =16 \Rightarrow {a^2} - {b^2} = {5^2} - {3^2}\\\ = 25 - 9\\\ = 16
So, a=5a = 5 and b=3b = 3 doesn’t satisfy the equation a2b2=16{a^2} - {b^2} = - 16 .
a=3a = 3 , b=5b = 5 and a=3a = - 3 , b=5b = - 5 .
The required complex numbers a+iba + ib are 35i- 3 - 5i and 3+5i3 + 5i .
Therefore, the square root of the complex number 16+30i- 16 + 30i are 35i- 3 - 5i and 3+5i3 + 5i .
So, the correct answer is “ 35i- 3 - 5i and 3+5i3 + 5i ”.

Note : In this type of question, students use the formula for finding the magnitude of complex numbers properly without making any mistakes. Also, note that when the square of a variable is given as a constant, then the values of the variable are positive and negative of the square root of the constant. This can be represented mathematically as, if x2=a{x^2} = a then x=±ax = \pm a .