Solveeit Logo

Question

Question: Find the solution of the integral \(\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx\)?...

Find the solution of the integral 1sin4x+cos4xdx\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx?

Explanation

Solution

We have to integrate 1sin4x+cos4x\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}} with respect to x'x'. Let us assume the value of 1sin4x+cos4xdx\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx is equal to II. We will simplify the integrand by dividing the numerator and denominator by cos4x{\cos ^4}x. We also know the tangent function is the ratio of sin function to cosine function. After simplification, we will use the substitution method and we put the final answer in terms of xx only.

Complete step-by-step solution:
Given 1sin4x+cos4xdx\int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx
Let I=1sin4x+cos4xdxI = \int {\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}}} dx
On dividing numerator and denominator by cos4x{\cos ^4}x, we get
I=1cos4xsin4x+cos4xcos4xdx\Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx
Splitting the terms in denominator, we get
I=1cos4xsin4xcos4x+cos4xcos4xdx\Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\cos }^4}x}}}}{{\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + \dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x}}}}} dx
As we know, sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x. So, sin4xcos4x=tan4x\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} = {\tan ^4}x and 1cos4x=sec4x\dfrac{1}{{{{\cos }^4}x}} = {\sec ^4}x
I=sec4xtan4x+1dx\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{{{\tan }^4}x + 1}}} dx
Put sec4x{\sec ^4}x as sec2x.sec2x{\sec ^2}x.{\sec ^2}x
I=sec2x.sec2xtan4x+1dx\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^4}x + 1}}} dx
Put sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x (identity)
\Rightarrow I = \int {\left\\{ {\dfrac{{1 + {{\tan }^2}x}}{{1 + {{\tan }^4}x}}} \right\\}} {\sec ^2}xdx
Now to simplify thus easily we use substitution method:
Let’s put tanx=t\tan x = t, then differentiating we have
sec2xdx=dt\Rightarrow {\sec ^2}xdx = dt (As we know ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x)
Then above integral becomes
I=(1+t2)1+t4dtI = \int {\dfrac{{\left( {1 + {t^2}} \right)}}{{1 + {t^4}}}} dt
Divide numerator and denominator by t2{t^2}
I=1t2+t2t21t2+t4t2dtI = \int {\dfrac{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^2}}}{{{t^2}}}}}{{\dfrac{1}{{{t^2}}} + \dfrac{{{t^4}}}{{{t^2}}}}}} dt
It can also be written as:
I=1t2+11t2+t2dtI = \int {\dfrac{{\dfrac{1}{{{t^2}}} + 1}}{{\dfrac{1}{{{t^2}}} + {t^2}}}} dt
I=1+1t2t2+1t2dt\Leftrightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}}}}} dt
To make the denominator a complete square we add and subtract 22.
I=1+1t2t2+1t22+2dt\Rightarrow I = \int {\dfrac{{1 + \dfrac{1}{{{t^2}}}}}{{{t^2} + \dfrac{1}{{{t^2}}} - 2 + 2}}} dt
Write t2+1t22{t^2} + \dfrac{1}{{{t^2}}} - 2 as (t1t)2{\left( {t - \dfrac{1}{t}} \right)^2}
I=(1+1t2)dt(t1t)2+(2)2\Rightarrow I = \int {\dfrac{{\left( {1 + \dfrac{1}{{{t^2}}}} \right)dt}}{{{{\left( {t - \dfrac{1}{t}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
Let t1t=vt - \dfrac{1}{t} = v , then differentiating we have
(1+1t2)dt=dv\Rightarrow \left( {1 + \dfrac{1}{{{t^2}}}} \right)dt = dv
Then above integral becomes
I=dvv2+(2)2\Rightarrow I = \int {\dfrac{{dv}}{{{v^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
As we know, dxx2+a2=1atan1xa+C\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C
Putting x=vx = v and a=va = v , we get
I=12tan1(v2)+C\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{v}{{\sqrt 2 }}} \right) + C
But t1t=vt - \dfrac{1}{t} = v.
v=t21t\therefore v = \dfrac{{{t^2} - 1}}{t}
Substitute value of vv in the above integral
I=12tan1(t212t)+C\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{t^2} - 1}}{{\sqrt 2 t}}} \right) + C
But we have substituted t=tanxt = \tan x , then we have
I=12tan1(tan2x12tanx)+C\Rightarrow I = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C
Where CC is the arbitrary constant called constant of integration.
Thus, the integration of 1sin4x+cos4x\dfrac{1}{{{{\sin }^4}x + {{\cos }^4}x}} is =12tan1(tan2x12tanx)+C = \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{{{\tan }^2}x - 1}}{{\sqrt 2 \tan x}}} \right) + C , where CC is the integration constant.

Note: We have indefinite integral that is why we added integration. If we have a definite integral we do not add integration constant. We know the integration formulas which yield inverse trigonometric functions:
(i). dxa2x2=sin1xa+C\int {\dfrac{{dx}}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\dfrac{x}{a} + C
(ii). dxx2+a2=1atan1xa+C\int {\dfrac{{dx}}{{{x^2} + {a^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + C
(iii). dxxx2a2=1asec1xa+C\int {\dfrac{{dx}}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\dfrac{x}{a} + C
We use them according to the given problem.