Solveeit Logo

Question

Question: Find the solution of the integral \(\int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx\). A. \(x - \log x ...

Find the solution of the integral x31x3+xdx\int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx.
A. xlogx+log(x2+1)tan1x+cx - \log x + \log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c
B. xlogx+12log(x2+1)tan1x+cx - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c
C. x+logx+12log(x2+1)+tan1x+cx + \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) + {\tan ^{ - 1}}x + c
D. x+logx12log(x2+1)tan1x+cx + \log x - \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c

Explanation

Solution

Here, in the given question, we have to integrate x31x3+x\dfrac{{{x^3} - 1}}{{{x^3} + x}} with respect to x'x'. Let us assume the value of x31x3+xdx\int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx is equal to II. We will first simplify the integrand and by using partial fractions we will proceed, then we will integrate the functions individually using integration formulas.

Complete step by step answer:
Let I=x31x3+xdxI = \int {\dfrac{{{x^3} - 1}}{{{x^3} + x}}} dx
Add and subtract xx in the numerator.
I=x3+xx1x3+xdx\Rightarrow I = \int {\dfrac{{{x^3} + x - x - 1}}{{{x^3} + x}}} dx
We can write it as,
I=1+(x1)x3+xdx\Rightarrow I = \int {1 + \dfrac{{\left( { - x - 1} \right)}}{{{x^3} + x}}} dx
On taking negative sign as common, we get
I=1(x+1)x3+xdx\Rightarrow I = \int {1 - \dfrac{{\left( {x + 1} \right)}}{{{x^3} + x}}} dx

On splitting the integral, we get
I=1dxx+1x3+xdx\Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{{x^3} + x}}} dx}
I=1dxx+1x(x2+1)dx.....(i)\Rightarrow I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)
Let us first solve x+1x(x2+1)\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}.
To solve this, we need to break the function into partial fractions. The way to do this is to find constants AA, BB and CC such that
x+1x(x2+1)=Ax+Bx+Cx2+1\Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}
Take LCM on the right-hand side
x+1x(x2+1)=A(x2+1)+(Bx+C)xx(x2+1)\Rightarrow \dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{{A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x}}{{x\left( {{x^2} + 1} \right)}}

On canceling out common terms, we get
x+1=A(x2+1)+(Bx+C)x\Rightarrow x + 1 = A\left( {{x^2} + 1} \right) + \left( {Bx + C} \right)x
This yields Ax2+A+Bx2+Cx=x+1A{x^2} + A + B{x^2} + Cx = x + 1; Then A+B=0A + B = 0, C=1C = 1 and A=1A = 1, which gives B=1B = - 1.
Therefore, our integral x+1x(x2+1)=Ax+Bx+Cx2+1\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}} = \dfrac{A}{x} + \dfrac{{Bx + C}}{{{x^2} + 1}}, becomes:
x+1x(x2+1)dx=(1x+x+1x2+1)dx\Rightarrow \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx
From (i)\left( i \right), we get
I=1dxx+1x(x2+1)dx.....(i)I = \int {1dx - \int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}} dx} .....\left( i \right)

On substituting value of x+1x(x2+1)dx=(1x+x+1x2+1)dx\int {\dfrac{{x + 1}}{{x\left( {{x^2} + 1} \right)}}dx} = \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)} dx, we get
I=1dx(1x+x+1x2+1)dx\Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} + \dfrac{{ - x + 1}}{{{x^2} + 1}}} \right)dx} }
I=1dx(1xxx2+1+1x2+1)dx\Rightarrow I = \int {1dx - \int {\left( {\dfrac{1}{x} - \dfrac{x}{{{x^2} + 1}} + \dfrac{1}{{{x^2} + 1}}} \right)dx} }
On opening the bracket and changing the signs (as there is negative sign outside the bracket), we get
I=1dx1xdx+xx2+1dx1x2+1dx\Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} dx + \int {\dfrac{x}{{{x^2} + 1}}dx} - \int {\dfrac{1}{{{x^2} + 1}}dx} }
Multiply and divide xx2+1dx\int {\dfrac{x}{{{x^2} + 1}}dx} , by 22.
I=1dx1xdx+122xx2+1dx1x2+1dx....(ii)\Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)

Now, we will integrate all the functions one-by-one.
As we know, the integral of 11 is xx and the integral of 1x\dfrac{1}{x} is logx\log x.
Now let us find the integral of 2xx2+1\dfrac{{2x}}{{{x^2} + 1}}.
Let x2+1=u{x^2} + 1 = u.
2xdx=du\Rightarrow 2xdx = du, from here we get
2xx2+1dx=duu\Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}dx = \int {\dfrac{{du}}{u}} }
duu=logu+c1\Rightarrow \int {\dfrac{{du}}{u}} = \log u + {c_1}
On substituting value of uu, we get
2xx2+1=log(x2+1)+c1\Rightarrow \int {\dfrac{{2x}}{{{x^2} + 1}}} = \log \left( {{x^2} + 1} \right) + {c_1}

Now, let us find the integral of 1x2+1\dfrac{1}{{{x^2} + 1}}. As we know 1a2+x2=1atan1(xa)+C\int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C
1x2+1dx=tan1x+c2\int {\dfrac{1}{{{x^2} + 1}}} dx = {\tan ^{ - 1}}x + {c_2}
On substituting all the values of integrals in (ii)\left( {ii} \right), we get
I=1dx1xdx+122xx2+1dx1x2+1dx....(ii)\Rightarrow I = \int {1dx - \int {\dfrac{1}{x}} } dx + \dfrac{1}{2}\int {\dfrac{{2x}}{{{x^2} + 1}}} dx - \int {\dfrac{1}{{{x^2} + 1}}} dx....\left( {ii} \right)
I=xlogx+12log(x2+1)tan1x+c1+c2\Rightarrow I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + {c_1} + {c_2}
We can write c1{c_1} and c2{c_2} as common constant cc.
I=xlogx+12log(x2+1)tan1x+c\therefore I = x - \log x + \dfrac{1}{2}\log \left( {{x^2} + 1} \right) - {\tan ^{ - 1}}x + c
Where cc is the arbitrary constant called constant of integration.

Therefore, the correct option is B.

Note: We have indefinite integral that is why we added integration constant. If we have a definite integral we do not add integration constant. We know integration formulas which yield inverse trigonometric functions:
1a2+x2=1atan1(xa)+C\Rightarrow \int {\dfrac{1}{{{a^2} + {x^2}}}} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C
1a2x2=sin1(xa)+C\Rightarrow \int {\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C
1xx2a2=1asec1(xa)+C\Rightarrow \int {\dfrac{1}{{x\sqrt {{x^2} - {a^2}} }}} = \dfrac{1}{a}{\sec ^{ - 1}}\left( {\dfrac{x}{a}} \right) + C